If diverges
show that:
diverges
I never get these general term series question, multiplied by some function
I know that simply by the divergence test or that it is the harmonic series.
which is not 0 and by the divergence test if the limit of diverges
Could say that the An is just like multiplying a constant and which multiplying by a constant will not affect if a series diverges or convergences? just the sum?
similarly
This is a Harmonic series which diverges...I am incorrect?
Well, I don't really understand what you're saying there :P Try organizing your thoughts more clearly and then presenting them.
If you are saying that multiplying the series by is like multiplying by a constant, that's wrong. It simply is not a constant. And no, it is not a harmonic series -- http://en.wikipedia.org/wiki/Harmoni...s_(mathematics) this is the only form of a harmonic series.
Thanks for the tips, I am just so eager to learn, I make a mess of myself, I was trying to say that multiplying by to the series of
, you can treat as constant, more than likely this is where I am incorrect, and that multiplying a constant to a series will not affect its convergence or divergence just it's sum.
Also tried saying that
can be written as
which looks to be of similar form to the harmonic series to me, but what the hell, I am more incorrect than correct, when I post messes like these, lol.
The harmonic series is ONLY this: . NOTHING else. Not everything that is divided by n is a harmonic series :P
The part about multiplying by a constant is true, though. If you multiply a series by a non-zero constant, its convergence will not change -- only the value of the series (if it converges). The thing here is that is not a constant (or do you mean the original divergent series ? either way, both aren't constants), even though it goes to 1 as n goes to infinity.