Results 1 to 3 of 3

Math Help - Trouble with integrating secxcosecx

  1. #1
    Newbie
    Joined
    Nov 2009
    Posts
    2

    Trouble with integrating secxcosecx

    Hi there,

    I'm trying to evaluate how the strength of a composite varies through a given range of orientation and in order to do this I need to integrate secxcosex and then evaluate the integral through a small range of x (depending on the composite the upper bound is typically around 0.1 to 0.2 rads and the lower bound is typically between 0.01 and 0.02 rads).

    However, I'm stuck on how to go about integrating secxcosecx. I tried integrating by parts but got stuck. I took u as equal to secx and dv as equal to cosecx. The first part of the integral (the 'uv' term) seemed to be fine (got secxln(cosecx+cotx)) but the next part that I need to integrate looks like a nightmare!:

    ln(cosecx+cotx)*(secxtanx)

    Anyone got any suggestions?

    Thanks.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor
    Jester's Avatar
    Joined
    Dec 2008
    From
    Conway AR
    Posts
    2,367
    Thanks
    42
    Quote Originally Posted by compositesguy View Post
    Hi there,

    I'm trying to evaluate how the strength of a composite varies through a given range of orientation and in order to do this I need to integrate secxcosex and then evaluate the integral through a small range of x (depending on the composite the upper bound is typically around 0.1 to 0.2 rads and the lower bound is typically between 0.01 and 0.02 rads).

    However, I'm stuck on how to go about integrating secxcosecx. I tried integrating by parts but got stuck. I took u as equal to secx and dv as equal to cosecx. The first part of the integral (the 'uv' term) seemed to be fine (got secxln(cosecx+cotx)) but the next part that I need to integrate looks like a nightmare!:

    ln(cosecx+cotx)*(secxtanx)

    Anyone got any suggestions?

    Thanks.
    \int \sec x \csc x \,dx = \int \frac{1}{\sin x \cos x} dx = \int \frac{\sec^2 x}{\tan x} dx

    then let u = \tan x
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Newbie
    Joined
    Nov 2009
    Posts
    2
    Excellent! Thanks for the help!

    Showing me to how to rearrange to an integral of the form f'x/fx made this much simpler!
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Differential Equations - Integrating Trouble
    Posted in the Differential Equations Forum
    Replies: 3
    Last Post: October 19th 2011, 05:49 PM
  2. Need help integrating
    Posted in the Calculus Forum
    Replies: 3
    Last Post: October 1st 2009, 04:35 AM
  3. Integrating cos(pi x)cos(4 pi x)
    Posted in the Calculus Forum
    Replies: 1
    Last Post: September 5th 2009, 05:24 PM
  4. Integrating e^(-x/45)/45
    Posted in the Advanced Statistics Forum
    Replies: 4
    Last Post: August 13th 2009, 08:37 PM
  5. Trouble with integrating trig functions
    Posted in the Calculus Forum
    Replies: 2
    Last Post: September 13th 2008, 02:02 PM

Search Tags


/mathhelpforum @mathhelpforum