Q: Suppose that the function $\displaystyle h:[a,b]\mapto$ is integrable and that the function $\displaystyle g:[a,b]\mapto\mathbb{R}$ satisfies the equality $\displaystyle h(x)=g(x)$ except at the single point $\displaystyle z\epsilon[a,b]$. Prove that g is integrable and $\displaystyle \int^b_{a}g=\int^b_{a}h$.