The question is to determine the percentage rate of change of the function at t=1 and t=5 for:
I calculated the derivative to be:
So is the answer to t=1, an increase of 60%?
And for t=5, 750%?
For t= 1, yes, for t= 5, no.
The rate of increase is, as you say, the derivative, f'. The percentage rate of increase is that, divided by f: f'/f= [tex]\frac{e^{0.3t^2}0.6t}{e^{0.3t^2}}= 0.6t. For t= 1, that is .6(1)= .6 or 60%. For t= 5, that is .6(5)= 3.0 or 300%.