$\displaystyle \lim_{x\to0^+}(9x+1)^{cotx} $

Hopefull I am at least on the right track, here's what I tried to do:

Let $\displaystyle y=(9x+1)^{cotx} $

$\displaystyle \lim_{x\to0^+}lny=cot(x)ln(9x+1)$

$\displaystyle \lim_{x\to0^+}lny=\frac{ln(9x+1)}{\frac{1}{cot(x)} } $

$\displaystyle \lim_{x\to0^+}lny=\frac{\frac{9}{9x+1}}{\frac{csc^ 2x}{cot^2x}} $

And I don't know what to do next.