Hello all.
How do you study the convergence of a sequence?
If you can, try to exemplify with this example:
$\displaystyle U_n = 5 - \frac{2}{\sqrt[3]{n}}$
Thanks in advance!
Have a read of this.
Ratio test - Wikipedia, the free encyclopedia
Your sequence looks like it converges to 5.
Be careful.The ratio is test can be used only for series.
The only way you can relate the two is that if you show
$\displaystyle \lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|< 1$
you know the series $\displaystyle \sum_{n\in\mathbb{N}}a_n$ converges which means that $\displaystyle \lim_{n\to\infty}a_n=0$ But that is not applicable here