It is possible to use the Simpson's rule toapproximatethe volume. Looking at your question though, I believe the volume is clearly meant to be calculated using calculus

Simpson's Rule Method:Lets assume each 'slice' of the area under the curve is rotated about the x-axis. This gives a circle with radius 'y' with thickness 'h', which varies based on each function value. So the idea is we add all these circles up to form the volume.

Since the area of a circle is we see that instead of adding up the areas of the function values (which is what the original simpson's rule does), we can square each value and multiply by to find the area. Then we multiply by h (as featured in the beginning of the formula) to find the volume for each slice. Using this piece of information we modify the Simpson's rule for area to one that calculates volume for n function values. This is:

Calculus:Alternatively (and easier once you learnt it), you could use calculus which also uses the circle concept to calculate the volume.

For calculus, the simple, general formula is

Answer is