f(x) = (10x^5 + 3x^4)/(2x^2)
Is this possible to solve using the quotient rule?? Can someone kindly demonstrate?
Sure, why not?
$\displaystyle f(x) = 10x^5+3x^4$, $\displaystyle g(x) = 2x^2$
$\displaystyle f'(x) = 50x^4 + 12x^3$, $\displaystyle g'(x) = 4x$
$\displaystyle h(x) = \frac{f(x)}{g(x)} \Rightarrow h'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)} =$ $\displaystyle \frac{(50x^4+12x^3)(2x^2)-(10x^5+3x^4)(4x)}{4x^2}$
Simplify the last expression and you're done.