Of course.

I see the improper integral now. Thanks.

But this still leaves me with the same dilemma:

$\displaystyle \frac{3(t-1)^\frac{2}{3}}{2}|_0^1 + \frac{3(t-1)^\frac{2}{3}}{2}|_1^2$

$\displaystyle [\frac{3(0)^\frac{2}{3}}{2} - \frac{3(-1)^\frac{2}{3}}{2}] + [\frac{3(1)^\frac{2}{3}}{2} - \frac{3(0)^\frac{2}{3}}{2}]$

$\displaystyle [0 - \frac{3}{2}] + [\frac{3}{2} - 0]$

$\displaystyle \frac{-3}{2} - \frac{3}{2} = 0$

Neither of the integrals diverges, but looking at the graph of the integrand the area cannot possibly be 0.