Solve this Differential Equation

$\displaystyle (2 + y)\frac{{dy}}{{dx}} = 4 + y^2$

here is my attempt to solve it :

$\displaystyle \begin{array}{l}

\int {\frac{{2 + y}}{{4 + y^2 }}dy = } \int {dx} \\

\int {\frac{2}{{4 + y^2 }}} {\rm{ }}dy + \int {\frac{y}{{4 + y^2 }}dy} = x \\

arc{\rm{ }}tg{\rm{ }}\frac{{\rm{y}}}{{\rm{2}}} + \frac{1}{2}{\rm{ }}\ln (4 + y^2) = x \\

\end{array}$

Is this right ?