Printable View
y=Ln(e^x + e^-x) , so far I got y=1/e^x-1/e^-x . I Dont think its correct though. please help
Quote: Originally Posted by bgonzal8 y=Ln(e^x + e^-x) , so far I got y=1/e^x-1/e^-x . I Dont think its correct though. please help in general $\displaystyle y=ln(f(x)) \Rightarrow y'=\frac{f'(x)}{f(x)}$ so $\displaystyle y=\ln (e^x + e^{-x}) \Rightarrow = \frac{e^{x} - e^{-x}}{e^x + e^{-x}}$
Quote: Originally Posted by Amer in general $\displaystyle y=ln(f(x)) \Rightarrow y'=\frac{f'(x)}{f(x)}$ so $\displaystyle y=\ln (e^x + e^{-x}) \Rightarrow = \frac{e^{x} - e^{-x}}{e^x + e^{-x}}$ Thank you
Quote: Originally Posted by Amer in general $\displaystyle y=ln(f(x)) \Rightarrow y'=\frac{f'(x)}{f(x)}$ so $\displaystyle y=\ln (e^x + e^{-x}) \Rightarrow = \frac{e^{x} - e^{-x}}{e^x + e^{-x}}$ = tanh(x)