g(x) = 3 + x + e^x
Help please?
$\displaystyle y=3+x+e^{x}$
$\displaystyle e^{y-3}=e^{x+e^x}$
Now putting it in standard Lambert-W terms:
$\displaystyle e^{y-3}=e^x e^{e^x}$
so:
$\displaystyle e^x=W(e^{y-3})$
but:
$\displaystyle y-3-x=e^{x}$
then:
$\displaystyle x=y-3-W(e^{y-3})$
. . . end special function discrimination. Equal rights for special functions.