Find the critical points of...
$\displaystyle x^3+x^2+2\alpha{x}(y+1)+y^2+2y $
And classify them for $\displaystyle |\alpha|> 1$ and $\displaystyle |\alpha| < 1$, where $\displaystyle \alpha \in \mathbb{R}$
Find the critical points of...
$\displaystyle x^3+x^2+2\alpha{x}(y+1)+y^2+2y $
And classify them for $\displaystyle |\alpha|> 1$ and $\displaystyle |\alpha| < 1$, where $\displaystyle \alpha \in \mathbb{R}$