# Thread: extremals no. 1

1. ## extremals no. 1

Find the extremals of $\displaystyle \int^{2}_{0}[\dot{x}^2 + 2\dot{x}] dt$ with $\displaystyle x(0) = 0$ and $\displaystyle x(2) = 1$ subject to the constraint $\displaystyle \int^{2}_{0}x dt = 2$

2. Originally Posted by wik_chick88
Find the extremals of $\displaystyle \int^{2}_{0}[\dot{x}^2 + 2\dot{x}] dt$ with $\displaystyle x(0) = 0$ and $\displaystyle x(2) = 1$ subject to the constraint $\displaystyle \int^{2}_{0}x dt = 2$
$\displaystyle \text{A problem of Hamilton's Variational Principle.}$

$\displaystyle L(\dot{x},x,t) = \dot{x}^2 + 2\dot{x} +\lambda (x-1)$

- $\displaystyle \frac{d}{dt} \frac{\partial L}{\partial \dot{x}} - \frac{\partial L}{\partial x} =0 \Rightarrow 2\ddot{x} - \lambda = 0 \Rightarrow x(t)=\frac{1}{4} \lambda \, t^2+\mu t + \gamma$

- $\displaystyle x(0)=0 \Rightarrow \gamma=0$
$\displaystyle x(2)=1 \Rightarrow \lambda+2\mu=1 \Rightarrow \mu=\frac{1-\lambda}{2}$
$\displaystyle \int^{2}_{0}x \, dt = 2 \Rightarrow \lambda=-3$
$\displaystyle x(t)=-\frac{3}{4} t^2+2 t \Rightarrow \dot{x}(t)=-\frac{3}{2} t+2$
$\displaystyle \int^{2}_{0}(\dot{x}^2 + 2\dot{x}) \, dt=\int^{2}_{0}(\tfrac{9}{4}t^2 -9t + 8) \, dt = 4$