Results 1 to 6 of 6

Math Help - theory of interest problem.

  1. #1
    Newbie
    Joined
    Jun 2012
    From
    NY
    Posts
    5

    theory of interest problem.

    Craig borrows 4500 dollars a year to pay for college expenses, starting on September 1, 2000 - the day he starts college - and ending on September 1, 2004. (i.e. that's 5 withdrawals total). After graduation, he decides to go to graduate school in mathematics, and his loans are deferred (i.e. they still accrue interest, but no payments are due). After graduation from graduate school, he needs to begin paying off his loans. He will make monthly payments for 6 years, and each payment will increase by 1.4 percent. His payments will begin on July 1, 2007, exactly 6 years and 10 months after he started college. If he pays a nominal rate of 6.6 percent convertible monthly for the entire life of the loans, what will be the size of his first payment?

    i tried converting the rate to a annual rate and calculated the value of the borrowed money at year 5 then i accumulated for 2yrs and 10/12.. THEN i found the value of the geometrics "annuity" 1 period before the 1st payment and accumulated for 1 month (because i used the monthly interest rate). AND I M STILL GETTING THE WRONG ANSWER!
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor

    Joined
    Apr 2005
    Posts
    15,707
    Thanks
    1470

    Re: theory of interest problem.

    6.6 is annual interest rate. Surely no intelligent person is going to pay 6.6*12= 79.2% annual interest!
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Newbie
    Joined
    Jun 2012
    From
    NY
    Posts
    5

    Re: theory of interest problem.

    i meant i calculated the effective rate j: (1+i/12)^12= 1+j ?? or is it unecessary?
    Follow Math Help Forum on Facebook and Google+

  4. #4
    MHF Contributor
    Joined
    Dec 2007
    From
    Ottawa, Canada
    Posts
    3,102
    Thanks
    68

    Re: theory of interest problem.

    Code:
    DATE       PAYMENTS      LOANS       INTEREST      BALANCE
    Aug31/99                                               .00
    Aug31/00                4500.00          .00       4500.00
    Aug31/01                4500.00       306.15       9306.15
    ...
    Aug31/04                4500.00      1355.34      25776.98 [1]
    
    May31/06                             3146.83      28923.81 [2]
    
    Jun30/06   -374.14 [3]                159.08      28708.75
    Jul31/06   -379.38                    157.90      28487.27
    Aug31/06   -384.69                    156.68      28259.26
    ...
    May31/12   -837.98                      9.21        845.07
    Jun30/12   -849.72                      4.65           .00
    [1]: owing on day of last loan advance
    [2]: owing at month-end previous to 1st payment
    [3]: 1st payment (which increases 1.14% monthly)

    Any questions?
    Follow Math Help Forum on Facebook and Google+

  5. #5
    Newbie
    Joined
    Jun 2012
    From
    NY
    Posts
    5

    Re: theory of interest problem.

    i tried that! but apparently it s wrong!
    Follow Math Help Forum on Facebook and Google+

  6. #6
    MHF Contributor
    Joined
    Dec 2007
    From
    Ottawa, Canada
    Posts
    3,102
    Thanks
    68

    Re: theory of interest problem.

    Whoops...I used 60 months instead of 72 months; 1st payment should be 295.04991...
    Code:
    DATE       PAYMENTS      LOANS       INTEREST      BALANCE
    Aug31/99                                               .00
    Aug31/00                4500.00          .00       4500.00
    Aug31/01                4500.00       306.15       9306.15
    ...
    Aug31/04                4500.00      1355.34      25776.98 [1]
    
    May31/06                             3146.83      28923.81 [2]
    
    Jun30/06   -295.05 [3]                159.08      28787.84
    Jul31/06   -299.18                    158.33      28646.99
    Aug31/06   -303.37                    157.56      28501.18
    ...
    May31/12   -780.22                      8.58        787.41
    Jun30/12   -791.75                      4.34           .00
    To make up for my goof(!), I'll give you the breakdown:

    Step 1: calculate [1]
    you need the effective annual rate, since transactions are annual:
    i = (1 + .066/12)^12 - 1 = .068033... ; n = 5 (years)
    [1] = 4500[(1 + i)^n - 1] / i = 25776.97721...

    Step 2: calculate [2]
    now we use the equivalent monthly rate:
    i = .066 / 12 = .0055 ; n = 21 (months): Sep/04 to May/06
    [2] = [1] * (1 + i)^n = 28923.81408...

    Step 3: calculate [3] (the first monthly payment)
    i remains same (since payments are monthly; n = 72 (6 years)
    [3] = [2] * (i - .014) / [1 - (1.014 / (1 + i))^n] = 295.04991...
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Calculate interest rate based on interest in parcels
    Posted in the Business Math Forum
    Replies: 1
    Last Post: February 17th 2011, 09:38 PM
  2. Compound interest at changing interest rates
    Posted in the Business Math Forum
    Replies: 2
    Last Post: October 21st 2010, 04:55 AM
  3. [SOLVED] Theory of Interest
    Posted in the Business Math Forum
    Replies: 2
    Last Post: September 22nd 2010, 06:47 AM
  4. Replies: 0
    Last Post: March 18th 2007, 01:31 PM
  5. another interest theory: present value
    Posted in the Business Math Forum
    Replies: 1
    Last Post: January 22nd 2007, 05:25 PM

Search Tags


/mathhelpforum @mathhelpforum