Results 1 to 3 of 3

Math Help - Proving Quadratic Equation

  1. #1
    Junior Member
    Joined
    Aug 2009
    Posts
    62

    Post Proving Quadratic Equation

    How do i prove this?

    If one root of the equation ax^2 + bx + c = 0 is square of the other, show that b^3 + a^2.c + a.c^2 = 3abc
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Member
    Joined
    Aug 2009
    Posts
    125
    If x,y are roots and one is the square of the other, then x-y^2 =0 or x^2 - y = 0. It follows that 0=(x-y^2)(x^2-y)= x^3 +y^3 -xy -x^2y^2 = (x+y)^3 - 3xy^2-3x^2y -xy -x^2y^2 =
    <br />
= (x+y)^3 -3xy(x+y) -xy -x^2y^2 <br />
    Now Viete's formulas say x+y = -\frac{b}{a} and xy=\frac{c}{a}.
    So 0=-\frac{b^3}{a^3} -3\frac{c}{a}(-\frac{b}{a}) - \frac{c}{a} - \frac{c^2}{a^2} = -\frac{b^3}{a^3} +3\frac{cb}{a^2}- \frac{c}{a} - \frac{c^2}{a^2} from which by multipliyng by a^3 the conclusion follows.
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Senior Member DeMath's Avatar
    Joined
    Nov 2008
    From
    Moscow
    Posts
    473
    Thanks
    5
    Quote Originally Posted by saberteeth View Post
    How do i prove this?

    If one root of the equation ax^2 + bx + c = 0 is square of the other, show that b^3 + a^2.c + a.c^2 = 3abc
    Or

    a{x^2} + bx + c = 0.

    {x_1} = x_2^2 \Leftrightarrow \frac{{ - b + \sqrt {{b^2} - 4ac} }}<br />
{{2a}} = {\left( {\frac{{ - b - \sqrt {{b^2} - 4ac} }}<br />
{{2a}}} \right)^2} \Rightarrow

    \Rightarrow  - ab + a\sqrt {{b^2} - 4ac}  = {b^2} + b\sqrt {{b^2} - 4ac}  - 2ac \Leftrightarrow

    \Leftrightarrow \left( {a - b} \right)\sqrt {{b^2} - 4ac}  = {b^2} + ab - 2ac \Rightarrow

    \Rightarrow \left( {{a^2} - 2ab + {b^2}} \right)\left( {{b^2} - 4ac} \right) = {b^4} + 2{b^2}\left( {ab - 2ac} \right) + {\left( {ab - 2ac} \right)^2} \Leftrightarrow

    \Leftrightarrow {a^2}{b^2} - 4{a^3}c - 2a{b^3} + 8{a^2}bc + {b^4} - 4{b^2}ac =

    = {b^4} + 2a{b^3} - 4a{b^2}c + {a^2}{b^2} - 4{a^2}bc + 4{a^2}{c^2} \Leftrightarrow

    - 4{a^3}c - 2a{b^3} + 8{a^2}bc = 2a{b^3} - 4{a^2}bc + 4{a^2}{c^2} \Leftrightarrow

    4a{b^3} + 4{a^2}{c^2} + 4{a^3}c = 12{a^2}bc \Leftrightarrow

    \Leftrightarrow {b^3} + {a^2}c + a{c^2} = 3abc.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Replies: 7
    Last Post: September 3rd 2011, 07:45 AM
  2. Proving this equation?
    Posted in the Pre-Calculus Forum
    Replies: 3
    Last Post: February 26th 2011, 10:00 PM
  3. Replies: 3
    Last Post: April 25th 2010, 03:53 PM
  4. Proving the equation
    Posted in the Advanced Statistics Forum
    Replies: 1
    Last Post: March 8th 2010, 10:49 PM
  5. Need help for Proving Quadratic Equations
    Posted in the Algebra Forum
    Replies: 2
    Last Post: August 27th 2009, 11:41 PM

Search Tags


/mathhelpforum @mathhelpforum