Im really stuck right now
evaluate x^2-x for the value of x satisfying
4(x-2)+2=4x-x(2-x)
Hello,
first solve the equation for x:
$\displaystyle 4(x-2)+2=4x-x(2-x) \Longleftrightarrow 4x-8+2=4x-2x+x^2$ which simplifies to:
$\displaystyle x^2-2x+6=0\ \Longrightarrow \ x_1=1+2i\ \vee \ x_2=1-2i$
Now plug in these values into the given term:
$\displaystyle (1+2i)^2-(1+2i)=1+4i-4-1-2i=-2+2i$
$\displaystyle (1-2i)^2-(1-2i)=1-4i-4-1+2i=-4-2i$
EB