1. ## Algebra

I have this equation

$\displaystyle [1-c_1(1-t_1)+m_1]Y = c_0 -c_1 t_0 + I + G + X - m_0$

which rearranged gives this equation.

$\displaystyle Y = \frac{1}{1-c_1 (1-t_1)+m_1}[c_0 -c_1 t_0 + I + G + X - m_0]$

I cant work out where they got $\displaystyle \frac{1}{1-c_1 (1-t_1)+m_1}$

i keep getting this

$\displaystyle Y = \frac{c_0 -c_1 t_0 + I + G + X - m_0}{1-c_1(1-t_1)+m_1}$

2. Originally Posted by el123
I have this equation

$\displaystyle [1-c_1(1-t_1)+m_1]Y = c_0 -c_1 t_0 + I + G + X - m_0$

which rearranged gives this equation.

$\displaystyle Y = \frac{1}{1-c_1 (1-t_1)+m_1}[c_0 -c_1 t_0 + I + G + X - m_0]$

I cant work out where they got $\displaystyle \frac{1}{1-c_1 (1-t_1)+m_1}$

i keep getting this

$\displaystyle Y = \frac{c_0 -c_1 t_0 + I + G + X - m_0}{1-c_1(1-t_1)+m_1}$
$\displaystyle ab = c$
to isolate $\displaystyle b$ , multiply both sides by the multiplicative inverse of $\displaystyle a$ ...
$\displaystyle \frac{1}{a} \cdot ab = \frac{1}{a} \cdot c$
$\displaystyle b = \frac{1}{a} \cdot c = \frac{c}{a}$