Results 1 to 2 of 2

Thread: System in R2

  1. #1
    Super Member dhiab's Avatar
    Joined
    May 2009
    From
    ALGERIA
    Posts
    582
    Thanks
    3

    System in R2

    Find all real numbers a,b solutions for system :

    $\displaystyle \left\{ \begin{array}{l}
    a^2 + 4b^2 = 1 \\
    4a^2 + a + 2\sqrt 3 b = 2 \\
    \end{array} \right.
    $
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor
    Joined
    Nov 2008
    From
    France
    Posts
    1,458
    Quote Originally Posted by dhiab View Post
    Find all real numbers a,b solutions for system :

    $\displaystyle \left\{ \begin{array}{l}
    a^2 + 4b^2 = 1 \\
    4a^2 + a + 2\sqrt 3 b = 2 \\
    \end{array} \right.
    $
    Hi

    From the first equation we can let $\displaystyle a = \cos \theta$ and $\displaystyle b = \frac12 \:\sin \theta$

    The second equation gives

    $\displaystyle 4 \cos^2 \theta + \cos \theta + \sqrt3 \:\sin \theta = 2$

    $\displaystyle 4 \cos^2 \theta + 2\:\left(\frac12\:\cos \theta + \frac{\sqrt3}{2} \:\sin \theta \right) = 2$

    $\displaystyle 4 \cos^2 \theta + 2\:\cos \left(\theta - \frac{\pi}{3}\right) = 2$

    $\displaystyle 2 \cos^2 \theta - 1 = -\:\cos \left(\theta - \frac{\pi}{3}\right)$

    $\displaystyle \cos(2 \theta) = \cos \left(\theta - \frac{\pi}{3} + \pi \right)$

    Therefore
    $\displaystyle 2 \theta = \theta + \frac{2\pi}{3} + 2k \pi$
    or
    $\displaystyle 2 \theta = -\theta - \frac{2\pi}{3} + 2k \pi$

    $\displaystyle \theta = \frac{2\pi}{3} + 2k \pi$ or $\displaystyle \theta = - \frac{2\pi}{9} + 2k \frac{\pi}{3}$

    Then
    $\displaystyle (a,b) = \left(-\frac12,\frac{\sqrt{3}}{4}\right)$

    $\displaystyle (a,b) = \left(\cos\frac{-2\pi}{9},\frac12\:\sin\frac{-2\pi}{9}\right)$

    $\displaystyle (a,b) = \left(\cos\frac{4\pi}{9},\frac12\:\sin\frac{4\pi}{ 9}\right)$

    $\displaystyle (a,b) = \left(\cos\frac{10\pi}{9},\frac12\:\sin\frac{10\pi }{9}\right)$
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. RSa system
    Posted in the Number Theory Forum
    Replies: 0
    Last Post: Mar 7th 2011, 07:10 PM
  2. 1-cos LTI system
    Posted in the Differential Equations Forum
    Replies: 0
    Last Post: Aug 17th 2010, 03:47 AM
  3. log-system
    Posted in the Algebra Forum
    Replies: 3
    Last Post: May 28th 2010, 06:08 AM
  4. Transfer Funtion for a cascade system and sub system
    Posted in the Differential Equations Forum
    Replies: 4
    Last Post: Sep 7th 2009, 05:13 AM
  5. One More System
    Posted in the Calculus Forum
    Replies: 0
    Last Post: Oct 31st 2007, 08:08 AM

/mathhelpforum @mathhelpforum