http://www.drrajusgre.com/images/09/...stion_28_3.png

any easy way to solve this problem

Printable View

- Aug 1st 2009, 05:00 AMbluffmaster.roy.007alternate way of solution
http://www.drrajusgre.com/images/09/...stion_28_3.png

any easy way to solve this problem - Aug 1st 2009, 05:10 AMmathaddict
- Aug 1st 2009, 05:12 AMstapel
Note that the decimal places indicate powers of 10, in the divisors, so you can sort-of cancel out to get:

. . . . .$\displaystyle \frac{(122)(9312)(44)}{(233)(369)(211)}$

Then factorization gives:

. . . . .$\displaystyle \frac{(2\times 61)(32\times 3 \times 97)(4\times 11)}{(233)(9\times 41)(211)}$

The only thing that cancels is the 3 from on top with a factor of 3 from the 9 underneath. You're stuck multiplying out the rest, I'm afraid. (Surprised)