# Thread: Simplest index notation

1. ## Simplest index notation

$\displaystyle Write$ $\displaystyle in$ $\displaystyle simplest$ $\displaystyle index$ $\displaystyle notation.$

$\displaystyle \frac{8\times5^2}{2^3\times10}$

Show complete working out.

2. Hello, Mr Rayon!

$\displaystyle \text{Write in simplest index notation: }\;\frac{8\cdot5^2}{2^3\cdot10}$
Not sure what "index notation" means.
. . I assume it means "with exponents."

The problem is just arithmetic, isn't it?

We have: .$\displaystyle \frac{8\cdot5^2}{2^3\cdot10} \:=\:\frac{200}{80} \;=\;\frac{5}{2} \;=\;2^{-1}\!\cdot5$

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

If we have to use exponents . . .

. . $\displaystyle \frac{8\cdot5^2}{2^3\cdot10} \;=\;\frac{2^3\cdot 5^2}{2^3\cdot(2\cdot5)} \;=\;\frac{2^3}{2^4}\cdot\frac{5^2}{5} \;=\;2^{-1}\!\cdot5$

3. 8 * 25 / 8 * 10 = 200 / 80 = 2.5

4. This was a silly question. I realised the answer a second after I made this post. The answer was $\displaystyle \frac{5}{2}$

### simplest index notation

Click on a term to search for related topics.