Page 1 of 2 12 LastLast
Results 1 to 15 of 17

Math Help - Unable to solve roots expression

  1. #1
    Member
    Joined
    May 2008
    Posts
    143

    Unable to solve roots expression

    Expression 1: \frac{1}{\sqrt[5]{8xy^2}}

    My Work:
    \frac{1}{\sqrt[5]{8xy^2}}=\frac{1}{\sqrt[5]{8xy^2}}*\frac{\sqrt[5]{8^4x^4y^3}}{\sqrt[5]{ 8^4x^4y^3}}=\frac{4\sqrt4}{8xy}

    The only answer choices I have for this self test are
    Answer: (8xy^2)^{-1/5}

    Expression 2:
    \frac{y^3}{\sqrt[4]y}

    The author states the correct answer for expression 2 is x^{11/4}, and yes they say "x" not "y"....either way not sure how to arrive at this answer either.

    This is a self teaching algebra book, however the author decided to not show her work in any of the chapter reviews which is frustrating.

    Thanks again!
    Last edited by allyourbass2212; June 12th 2009 at 05:11 PM.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor Amer's Avatar
    Joined
    May 2009
    From
    Jordan
    Posts
    1,093
    Quote Originally Posted by allyourbass2212 View Post
    Expression 1: \frac{1}{\sqrt[5]8xy^2}

    My Work:
    \frac{1}{\sqrt[5]8xy^2} =\frac{\sqrt[5]8^4x^4y^3}{\sqrt[5]8^4x^4y^3}=\frac{4\sqrt[5]4x^4y^3}{8xy}=\frac{\sqrt4x^4y^3}{2}

    The only answer choices I have for this self test are
    Answer: (8xy^2)^{-1/5}

    Expression 2:
    \frac{y^3}{\sqrt[4]y}

    The author states the correct answer for expression 2 is x^{11/4}, and yes they say "x" not "y"....either way not sure how to arrive at this answer either.

    This is a self teaching algebra book, however the author decided to not show her work in any of the chapter reviews which is frustrating.

    Thanks again!
    for the first one

    \frac{1}{\sqrt[5]{8xy^2}}=\left((8xy^2)\right)^{\frac{-1}{5}}

    since \frac{1}{A}=A^{-1}
    and

    \sqrt[n]{A}=A^{\frac{1}{n}}

    \frac{y^3}{\sqrt[4]{y}} = y^3 (\sqrt[4]{y})^{-1}

    y^3 (\sqrt[4]{y})^{-1}= y^3(y^{\frac{-1}{4}})

    y^{\frac{12}{4}+\frac{-1}{4}}=y^{\frac{11}{4}}
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Member
    Joined
    May 2008
    Posts
    143
    For
    \frac{y^3}{\sqrt[4]{y}}=

    Since this is a root thats cubed why can we not eliminate the nth root in the denominator, and write the denominator as the nth root of some quantity of the nth power.

    e.g.

    \frac{y^3}{\sqrt[4]y} = \frac{y^3}{\sqrt[4]y}*\frac{\sqrt[4]y^3}{\sqrt[4]y^3}
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Super Member
    Joined
    May 2009
    Posts
    527
    Quote Originally Posted by allyourbass2212 View Post
    For
    \frac{y^3}{\sqrt[4]{y}}=

    Since this is a root thats cubed why can we not eliminate the nth root in the denominator, and write the denominator as the nth root of some quantity of the nth power.

    e.g.

    \frac{y^3}{\sqrt[4]y} = \frac{y^3}{\sqrt[4]y}*\frac{\sqrt[4]y^3}{\sqrt[4]y^3}
    You could do that, but why? It would just be more work. You have two powers where the bases are the same. Using the properties of exponents, just subtract the exponents:

    \frac{y^3}{\sqrt[4]y} = \frac{y^3}{y^{1/4}} = y^{3 - 1/4} = y^{11/4}


    01
    Follow Math Help Forum on Facebook and Google+

  5. #5
    Member
    Joined
    May 2008
    Posts
    143
    Removed, due to incorrect expression see original post edited.
    Last edited by allyourbass2212; June 12th 2009 at 05:11 PM.
    Follow Math Help Forum on Facebook and Google+

  6. #6
    Super Member
    Joined
    May 2009
    Posts
    527
    You state that this is the problem:
    Quote Originally Posted by allyourbass2212 View Post
    Expression 1:
    \frac{1}{\sqrt[5]8xy^2}
    and that this is the answer:
    The only answer choices I have for this self test are
    Answer: (8xy^2)^{-1/5}
    Something is wrong, because the problem, as you wrote it, doesn't simplify to that answer. Part of the confusion is whether the problem is supposed to be this:
    \frac{1}{\sqrt[5]8xy^2}\;\;\;{\color{red}Eq.1a}
    or this:
    \frac{1}{\sqrt[5]{8xy^2}}\;\;\;{\color{red}Eq.1b}

    See the difference? Amer assumes you meant Eq.1b, and it does simplify to the answer you wrote above.

    You will need to double-check to see if you copied down the problem and answer correctly before we can proceed. If the problem is supposed to be Eq.1a, then yes, you would simplify by rationalizing the denominator. But if the problem is supposed to be Eq.1b, then you just need to rewrite using negative & fractional exponents.


    01
    Follow Math Help Forum on Facebook and Google+

  7. #7
    Member
    Joined
    May 2008
    Posts
    143
    I meant 1.b, thanks for the clarification. But I still do not see why I cannot proceed as I did rationalizing the denominator.
    Follow Math Help Forum on Facebook and Google+

  8. #8
    Super Member
    Joined
    May 2009
    Posts
    527
    Quote Originally Posted by allyourbass2212 View Post
    I meant 1.b, thanks for the clarification. But I still do not see why I cannot proceed as I did rationalizing the denominator.
    If we pretend that the problem was Eq.1a:
    \frac{1}{\sqrt[5]8xy^2}
    When rationalizing the denominator, you only deal with the 5th root of 5. You don't need to touch the x or y^2 because they are not underneath the radical sign:
    \begin{aligned}<br />
\frac{1}{\sqrt[5]8xy^2} &= \frac{1}{\sqrt[5]8xy^2} \times \frac{\sqrt[5]{8^4}}{\sqrt[5]{8^4}} \\<br />
&= \frac{\sqrt[5]{8^4}}{8xy^2} \\<br />
&= \frac{4\sqrt[5]{4}}{8xy^2} \\<br />
&= \frac{\sqrt[5]{4}}{2xy^2}<br />
\end{aligned}

    But the problem is actually Eq.1b:
    \frac{1}{\sqrt[5]{8xy^2}}

    If you really want to rationalize the denominator, it would go like this:
    \begin{aligned}<br />
\frac{1}{\sqrt[5]{8xy^2}} &= \frac{1}{\sqrt[5]{8xy^2}} \times \frac{\sqrt[5]{(8xy^2)^4}}{\sqrt[5]{(8xy^2)^4}} \\<br />
&= \frac{\sqrt[5]{4096x^4 y^8}}{8xy^2} \\<br />
&= \frac{4y\sqrt[5]{4x^4 y^3}}{8xy^2} \\<br />
&= \frac{\sqrt[5]{4x^4 y^3}}{2xy}<br />
\end{aligned}

    See how messy it is, compared to the answer given?

    \frac{1}{\sqrt[5]{8xy^2}} = (8xy^2)^{-1/5}


    01
    Last edited by yeongil; June 12th 2009 at 05:07 PM.
    Follow Math Help Forum on Facebook and Google+

  9. #9
    Member
    Joined
    May 2008
    Posts
    143
    Also, I do not understand your solutions yeongil & Amer



    I do not understand how the y ^2 does not become part of the fraction, or where the -1 numerator comes from.

    e.g.
    in the case of this expression it seems to me the n = 5 and the m = 2.

    thanks again
    Follow Math Help Forum on Facebook and Google+

  10. #10
    MHF Contributor Amer's Avatar
    Joined
    May 2009
    From
    Jordan
    Posts
    1,093
    Quote Originally Posted by allyourbass2212 View Post
    Also, I do not understand your solutions yeongil & Amer



    I do not understand how the y ^2 does not become part of the fraction, or where the -1 numerator comes from.

    e.g.
    in the case of this expression it seems to me the n = 5 and the m = 2.

    thanks again
    it comes from this
    for any real numbers A you can write this

    \frac{1}{A}=A^{-1} so

    \frac{1}{x^2}=x^{-2}

    \frac{y^3}{x^9}=\frac{x^{-9}}{y^{-3}}

    and

    \sqrt[n]{y}=y^{\frac{1}{n}}

    \sqrt[n]{x^4}=x^{\frac{4}{n}} in general

    \sqrt[n]{x^m}=x^{\frac{m}{n}}

    mixed example

    \frac{1}{\sqrt[9]{x^4}}=x^{\frac{-4}{9}}

    \frac{x^6}{\sqrt[10]{x^4}}=(x^6)(x^{\frac{-4}{10}})

    \Rightarrow (x^{\frac{60}{10}})(x^{\frac{-4}{10}})

    \Rightarrow x^{\frac{60-4}{10}}

    \Rightarrow x^{\frac{56}{10}}

    \Rightarrow x^{\frac{50}{10}+\frac{6}{10}}

    \Rightarrow x^{5} (x^{\frac{6}{10}})=x^5(\sqrt[10]{x^6})
    Follow Math Help Forum on Facebook and Google+

  11. #11
    Member
    Joined
    May 2008
    Posts
    143


    But why is the numerator 1 and not the two? e.g. 8xy^-2/5
    Follow Math Help Forum on Facebook and Google+

  12. #12
    MHF Contributor Amer's Avatar
    Joined
    May 2009
    From
    Jordan
    Posts
    1,093
    Quote Originally Posted by allyourbass2212 View Post


    But why is the numerator 1 and not the two? e.g. 8xy^-2/5
    I see

    the power 2 is for y not for x

    \frac{1}{\sqrt[n]{x^4y^2z^7}}=(x^4y^2z^7)^{\frac{-1}{n}}

    but if
    \frac{1}{\sqrt[4]{x^3y^3}}=(xy)^{\frac{3}{4}} because the power of x and y is the same
    Follow Math Help Forum on Facebook and Google+

  13. #13
    Member
    Joined
    May 2008
    Posts
    143
    Quote Originally Posted by Amer View Post
    I see

    the power 2 is for y not for x

    \frac{1}{\sqrt[n]{x^4y^2z^7}}=(x^4y^2z^7)^{\frac{-1}{n}}

    but if
    \frac{1}{\sqrt[4]{x^3y^3}}=(xy)^{\frac{3}{4}} because the power of x and y is the same
    I just do not clearly see how these examples coincide with \sqrt[n]{a^m}

    For instance wouldnt the m in this case seems like it should be the x^4, instead its 1 and im not sure how you choose that.
    \frac{1}{\sqrt[n]{x^4y^2z^7}}=(x^4y^2z^7)^{\frac{-1}{n}}<br />

    And in the other example you use the 3 as m. I assume because every exponent under the root is a 3.

    \frac{1}{\sqrt[4]{x^3y^3}}=(xy)^{\frac{3}{4}}<br />
    Follow Math Help Forum on Facebook and Google+

  14. #14
    MHF Contributor Amer's Avatar
    Joined
    May 2009
    From
    Jordan
    Posts
    1,093
    Quote Originally Posted by allyourbass2212 View Post
    \frac{1}{\sqrt[n]{x^4y^2z^7}}=(x^4y^2z^7)^{\frac{-1}{n}}<br />

    And in the other example you use the 3 as m. I assume because every exponent under the root is a 3.

    \frac{1}{\sqrt[4]{x^3y^3}}=(xy)^{\frac{3}{4}}<br />
    anyway I think with my example I made it more harder


    I mistake in the second example

    \frac{1}{\sqrt[4]{x^3y^3}}= (xy)^{\frac{-3}{4}}

    Quote Originally Posted by allyourbass2212 View Post
    I just do not clearly see how these examples coincide with \sqrt[n]{a^m}

    For instance wouldnt the m in this case seems like it should be the x^4, instead its 1 and im not sure how you choose that.

    ok lats solve it in other way

    \frac{1}{\sqrt[5]{8xy^2}}

    \frac{1}{(8xy^2)^{\frac{1}{5}}} since any n root you can write it like this
    \sqrt[n]{a} = a^{\frac{1}{n}}

    if it was in the denominator or if it was in the numentor like this

    \frac{1}{\sqrt[n]{a}}=\frac{1}{a^{\frac{1}{n}}}
    ok

    \frac{1}{(8xy^2)^{\frac{1}{5}}}
    now the improtant step

    \frac{1}{(8xy^2)^{\frac{1}{5}}} = (8xy^2)^{\frac{-1}{5}}

    since any fraction \frac{1}{a} = a^{-1} for any a

    a can be

    \frac{1}{(allyourbass2212)} = (allyourbass2212)^{-1} a can be anything ploynomial or function anything ..

    \frac{1}{\left((\sqrt[15]{t^8})log(sinx^2)cosy\right)}=\left((\sqrt[15]{t^8})log(sinx^2)cosy\right)^{-1}

    then if you can simplify it is ok like this

    \frac{x}{\sqrt{x}} = x(\frac{1}{x^{\frac{1}{2}}}) = x(x^{\frac{-1}{2}}) = x^{1+\frac{-1}{2}}=x^{\frac{1}{2}}

    it is clear or not ?
    Follow Math Help Forum on Facebook and Google+

  15. #15
    Member
    Joined
    May 2008
    Posts
    143
    Unfortunately I am still confused
    \sqrt[n]{a^m}

    =

    I still do not understand why in the above expression m = 1 and more importantly why  m \neq 2

    An example like this makes sense \sqrt[5]{x^3}=x^{3/5}, but in the above expression it does not.
    Follow Math Help Forum on Facebook and Google+

Page 1 of 2 12 LastLast

Similar Math Help Forum Discussions

  1. Unable to Solve Problem
    Posted in the Geometry Forum
    Replies: 2
    Last Post: January 15th 2010, 11:58 PM
  2. Unable to solve this limit problem
    Posted in the Calculus Forum
    Replies: 1
    Last Post: October 27th 2009, 09:28 AM
  3. 3/5 - Written problem (unable to solve)
    Posted in the Algebra Forum
    Replies: 1
    Last Post: October 6th 2008, 02:03 PM
  4. Replies: 3
    Last Post: September 3rd 2008, 06:56 PM
  5. Unable to simplify an expression
    Posted in the Trigonometry Forum
    Replies: 6
    Last Post: January 27th 2008, 02:39 PM

Search Tags


/mathhelpforum @mathhelpforum