Can you help me with these
Rewrite these relations in index form (that is, without using logarithims):
(a) logα (x + y) = logα x + logα y
(b) log ₁₀ x = 3 + log ₁₀ y
(c) log₃ x = 4log₃y
(d) 2log₂x + 3log₂y – 4log₂z = 0
(e) xlogα 2 = log α y
(f) log α x - log α y = n log α z
(g) ˝log₂ x + = ⅓log₂ y – 1
(h) 2 log₃(2x + 1) = 3 log₃ (2x – 1)
Hello, Joel!
Some of your bases didn't show up . . . I'll use .
We have: .Rewrite in index form (that is, without using logarithims):
Then: .
We have: .
Then: .
We have: .
Then: .
We have: .
Then: .
We have: .
Then: .
We have: .
Then: .
We have: .
. .
Then: .
We have: .
Then: .