Can you help me with these

Rewrite these relations in index form (that is, without using logarithims):

(a) logα (x + y) = logα x + logα y

(b) log ₁₀ x = 3 + log ₁₀ y

(c) log₃ x = 4log₃y

(d) 2log₂x + 3log₂y – 4log₂z = 0

(e) xlogα 2 = log α y

(f) log α x - log α y = n log α z

(g) ˝log₂ x + = ⅓log₂ y – 1

(h) 2 log₃(2x + 1) = 3 log₃ (2x – 1)