Consider

$\displaystyle

x^5+ax^4+bx^3+cx^2+dx+e=0,x\in R

$

1.If all roots are positive then which of the following is true

(A)$\displaystyle a^5<5^5 e$

(B)$\displaystyle a^5>5^5 e$

(C)$\displaystyle a^4=5^4 e$

(D)$\displaystyle a^3=5^3 e$

2.If roots can take any sign

(A$\displaystyle )(a^2-2b)^5>5e^2$

(B)$\displaystyle (a^2+2b^2)>5e^2$

(C)$\displaystyle (2a^2-b)>5e^2$

(D)None of these

3.If one root is zero

(a)$\displaystyle 9a^2<24b$

(B)$\displaystyle 9a^2\geq 24b$

(C)$\displaystyle 9a^2+24b>0$

(d)None of these

4.If all coefficients of the equation are positive then which of the following is true

(A)$\displaystyle a^5<5^5 e$

(B)$\displaystyle a^5<5e$

(C)$\displaystyle a^5<3^5 e$

(d)None of these