Originally Posted by

**Kasper** Hey guys, I'm sorry for the extremely simple question, but I'm doing math by Distance Learning, and my tutor seems to be MIA. =(

So I've got the equation $\displaystyle f(x)=x^2-4\sqrt{x}$ and I need to find my x intercept, which i'm doing by setting $\displaystyle f(x)=0$.

This gives me

$\displaystyle 0=x^2-4\sqrt{x}$

Now I'm trying to simplify it to isolate x by pulling out an x, but I'm not sure if this is a valid rule or not.

$\displaystyle 0=x^2-4\sqrt{x}$

$\displaystyle 0=x^2-4x^{1/2}$

$\displaystyle 0=x(x-4(1)^{-1/2})$

If I can do this, I think that next I would have $\displaystyle 0=x(x-4)$ which would mean that x cannot be equal to 0 or 4, and I think that these would be my x-intercept(s)?

Thoughts? I don't know why this is spiraling my brain out of control.

Also, in the original function, to find the y intercept, i plug in 0 for x right? which would give me 0, meaning that the y-intercept is through the origin? Can I use this to decide that the x-intercept is also 0?

Thanks in advance for ANY help!