# function min/max value (using geometric interpretation)

• May 14th 2009, 02:39 PM
Bernice
function min/max value (using geometric interpretation)
a) Find function $\displaystyle f=(x_1-4)^2+(x_2-3)^2$ ,where $\displaystyle x_1, x_2\ge 0$ and restrictions are: $\displaystyle \begin{cases} 2x_1+3x_2\ge 6 \\ 3x_1-2x_2\le 18\\ -x_1+2x_2\le8 \end{cases}$
min and max value using task geometric interpretation.

b) Find: $\displaystyle max f=3x_1+4x_2$ ,where $\displaystyle x_1, x_2\ge 0$ and restrictions are:
$\displaystyle \begin{cases} x_1^2+x_2^2\le 25 \\ x_1 * x_2\ge 4 \end{cases}$
using geometric interpretation.
• May 15th 2009, 11:59 PM
CaptainBlack
Quote:

Originally Posted by Bernice
a) Find function $\displaystyle f=(x_1-4)^2+(x_2-3)^2$ ,where $\displaystyle x_1, x_2\ge 0$ and restrictions are: $\displaystyle \begin{cases} 2x_1+3x_2\ge 6 \\ 3x_1-2x_2\le 18\\ -x_1+2x_2\le8 \end{cases}$
min and max value using task geometric interpretation.

$\displaystyle r^2= f=(x_1-4)^2+(x_2-3)^2$