y= k(x+1) to the power of n
find approximate values for k and n given that
x 4 8 15
y 4.45 4.60 4.8
Hello scouserTake logs of both sides:
$\displaystyle \log y = \log\Big(k(x+1)^n\Big)$
$\displaystyle = \log k +n\log(x+1)$
Plot the graph of $\displaystyle \log y$ against $\displaystyle \log(x+1)$, using the three pairs of values you're given. Draw the best straight line and read off the gradient and intercept.
Gradient = $\displaystyle n \approx 0.065$
Intercept = $\displaystyle \log k$, which gives $\displaystyle k \approx 4$
Grandad