If 3*logb(2) + logb(5) - logb(c) = 0, then find c?
Follow Math Help Forum on Facebook and Google+
Originally Posted by Mr_Green If 3*logb(2) + logb(5) - logb(c) = 0, then find c? c = 40; I'll show the solution when I return, unless by that time someone has already.
Originally Posted by Mr_Green If 3*logb(2) + logb(5) - logb(c) = 0, then find c? $\displaystyle \log_b 2^3+\log_b 5-\log_b c=0$ $\displaystyle \log_b (8\cdot 5/c)=0$ Thus, $\displaystyle b^0=1=40/c$ Thus, $\displaystyle c=40$
i think i see it logb(2^3) + logb (5) - logb(c) logb(8) + logb(5) -logb(c) =0 logb(40) =logb(c) = 0 so c = 40
View Tag Cloud