Results 1 to 3 of 3

Math Help - Volume and area

  1. #1
    Junior Member
    Joined
    Sep 2008
    Posts
    71

    Volume and area

    Well I'm having troubles doing a few word problems about area and volume.
    If you can show me how you do these much appreciated!

    A coffee store sold two different cans.Regular and large. Dimensions of the large can is twice the dimension of the regular can. If the regular can has a volume of 72 cubic inches, what is the volume of the large can?

    A sphere has a surfeace area of 6 square yards. The sphere is en;arged by a scale factor of 3 to produce a new sphere. what is the new surface area of the new sphere?
    For this the answer I got was 18 square yards.

    The Cylinders are similar. The Volume of the large cylinder is 64 cubic centimeters and the volume of the small is 1 cubic centimeter. The height of the large cylinder is 6cm. What is the height of the small one?
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Member
    Joined
    Sep 2007
    Posts
    81
    Ok lets work through them.

    Quote Originally Posted by Jubbly View Post
    A coffee store sold two different cans.Regular and large. Dimensions of the large can is twice the dimension of the regular can. If the regular can has a volume of 72 cubic inches, what is the volume of the large can?
    Out of that we get a few things. Can(regular) = 72 cubic inches. Can(large) = Can(regular) * 2.

    Or in algebra terms.

    The regular can can equal x, the large can would then be 2x, if x is 72, find 2x.

    72 * 2 = 144.

    The large can is 144 cubic inches.

    Quote Originally Posted by Jubbly View Post
    A sphere has a surfeace area of 6 square yards. The sphere is en;arged by a scale factor of 3 to produce a new sphere. what is the new surface area of the new sphere?
    For this the answer I got was 18 square yards.
    Your answer is correct.

    Quote Originally Posted by Jubbly View Post
    The Cylinders are similar. The Volume of the large cylinder is 64 cubic centimeters and the volume of the small is 1 cubic centimeter. The height of the large cylinder is 6cm. What is the height of the small one?
    Well, the big cylinder is 64 times the small cylinder. In other words let the small cylinder be x, and the large 64x. If 64x is 6cm, what does x equal?
    Follow Math Help Forum on Facebook and Google+

  3. #3
    MHF Contributor
    Prove It's Avatar
    Joined
    Aug 2008
    Posts
    10,969
    Thanks
    1011
    Quote Originally Posted by Peleus View Post
    Ok lets work through them.



    Out of that we get a few things. Can(regular) = 72 cubic inches. Can(large) = Can(regular) * 2.

    Or in algebra terms.

    The regular can can equal x, the large can would then be 2x, if x is 72, find 2x.

    72 * 2 = 144.

    The large can is 144 cubic inches.



    Your answer is correct.



    Well, the big cylinder is 64 times the small cylinder. In other words let the small cylinder be x, and the large 64x. If 64x is 6cm, what does x equal?
    Oh no... no no no no no...

    If the dimensions of a shape are magnified by a scale factor, then the AREA of that shape is magnified by the SQUARE of the scale factor, and the VOLUME of that shape is magnified by the CUBE of the scale factor.

    So for Question 1.

    \textrm{Can}_{\textrm{Regular}} = 72\textrm{inches}^3

    Since the volume is magnified by the CUBE of the scale factor (which in this case is 2...)

    \textrm{Can}_{\textrm{Large}} = 2^3 \times 72\textrm{inches}^3

     = 8 \times 72\textrm{inches}^3

     = 576\textrm{inches}^3.


    For Question 2.

    The scale factor is 3, so the AREA is magnified by the SQUARE of 3.

    So SA_{\textrm{old}} = 6\textrm{yards}^2

    SA_{\textrm{new}} = 3^2 \times 6\textrm{yards}^2

     = 9 \times 6\textrm{yards}^2

     = 54\textrm{yards}^2.


    For Question 3.

    The cylinders are similar, so their dimensions have been magnified by a scale factor. This means that their VOLUMES have been magnified by the CUBE of the scale factor.

    So V_{\textrm{Large}} = k^3 \times V_{\textrm{Small}}

    64\textrm{cm}^3 = k^3 \times 1\textrm{cm}^3

    k^3\textrm{cm}^3 = 64\textrm{cm}^3

    k^3 = 64

    k = 4.


    Using this information

    h_{\textrm{Large}} = k \times h_{\textrm{Small}}

    6\textrm{cm} = 4 \times h_{\textrm{Small}}\textrm{cm}

    h_{\textrm{Small}} = 1.5\textrm{cm}.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. 2 Area Volume
    Posted in the Calculus Forum
    Replies: 4
    Last Post: May 4th 2009, 01:15 PM
  2. Area Volume
    Posted in the Calculus Forum
    Replies: 4
    Last Post: May 2nd 2009, 03:22 PM
  3. Area Volume
    Posted in the Calculus Forum
    Replies: 4
    Last Post: April 25th 2009, 06:19 PM
  4. Max/Min Of Area/Volume
    Posted in the Calculus Forum
    Replies: 1
    Last Post: March 1st 2009, 01:29 PM
  5. Area & Volume
    Posted in the Geometry Forum
    Replies: 2
    Last Post: May 21st 2008, 06:45 PM

Search Tags


/mathhelpforum @mathhelpforum