(3^4th root of 32a^5) - (a^4th root of 162a)
How do I go about solving this?
Oh, BTW, Happy Easter!
Hello, Hapa!
It's impossible to read what you've typed.
But I'll take a guess at what you meant . . .
I'll simplify those radicals separately . . .Simplify: .$\displaystyle 3\sqrt[4]{32a^5} - a\sqrt[4]{162a}$
. . $\displaystyle \sqrt[4]{32a^5} \:=\:\sqrt[4]{16a^4\cdot2a} \:=\:\sqrt[4]{16a^4}\cdot\sqrt[4]{2a} \;=\;2a\sqrt[4]{2a}$
. . $\displaystyle \sqrt[4]{162a} \:=\:\sqrt[4]{81\cdot2a} \:=\:\sqrt[4]{81}\sqrt[4]{2a} \:=\:3\sqrt[4]{2a}$
The problem becomes: .$\displaystyle 3\left(2a\sqrt[4]{2a}\right) - a\left(3\sqrt[4]{2a}\right)$
. . . . . . . . . . . . . . .$\displaystyle = \;6a\sqrt[4]{2a} - 3a\sqrt[4]{2a}$
. . . . . . . . . . . . . . .$\displaystyle = \;3a\sqrt[4]{2a}$