The Equation is $\displaystyle x(y) = 1000e^{1.3y}$ x = 2000 find y

So applied Logarithms to both sides which left me:

$\displaystyle

\log_{10} 2000 + \log_{10} y = \log_{10} 1000 + 1.3y \log_{10} e

$

$\displaystyle

3.30103 + \log_{10} y= 3 + 1.3y(0.43429)

$

$\displaystyle

\log_{10} y = 3 + 0.56458y -3.30103

$

$\displaystyle

\log_{10} y = 0.56458y -0.30103

$

I'm not sure where to go from here?