the A and B's represent matrices
A(B + A^-1)((B^-1) A) i got A^2 +AB^-1
(A + B)(A^-1 + B^-1) i got 2I + AB^-1 + BA^-1
and [A^3(A^2)^-1]^-1 i got A^-1
last one is A to power of 3 times A to power of 2 to the power of -1, all to the -1.
thanks
the A and B's represent matrices
A(B + A^-1)((B^-1) A) i got A^2 +AB^-1
(A + B)(A^-1 + B^-1) i got 2I + AB^-1 + BA^-1
and [A^3(A^2)^-1]^-1 i got A^-1
last one is A to power of 3 times A to power of 2 to the power of -1, all to the -1.
thanks
Hello, b0mb3rz!
I don't agree with your first answer . . .
For matrices A and B, simplify: .
I got: . . . . . no
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
I got: . . . . . Right!
We have: .
Distribute: .
Distribute: .
. . . . . . .
. . . . . . .
Do we dare to apply normal exponent rules to matrices?
I got: . . . . . Yes!
Does ?
. . The answer is Yes.