# Help needed with "Exponential and Logarithm Functions"

• Mar 25th 2009, 02:03 PM
14041471
Help needed with "Exponential and Logarithm Functions"
I don't really know where to start in solving this functions, any help would be much appriciated.

Solve for x. log2(3x – 8) ≥ 6
Solve for x. log556x+1 = 13
• Mar 25th 2009, 02:56 PM
stapel
Quote:

Originally Posted by 14041471
Solve for x. log2(3x – 8) ≥ 6

As you learned when graphing log functions, the height of the line increases as the input value increases. So I believe we can convert the above to the following:

. . . . .\$\displaystyle \log_2(3x\, -\, 8)\, \ge \,\log_2(2^6)\$

...and then equate the arguments:

. . . . .\$\displaystyle 3x\, -\, 8\, \ge\, 2^6\$

Solve the linear equation.

Quote:

Originally Posted by 14041471
Solve for x. log556x+1 = 13

I will guess that the "556" is the base, and that the "1" is outside the log. Then solve by subtracting the 1 to the other side. Then raise each side as a power on 556:

. . . . .\$\displaystyle 556^{\log_{556}(x)}\, =\, 556^{12}\$