Results 1 to 11 of 11

Math Help - how to factor

  1. #1
    Member
    Joined
    Sep 2006
    Posts
    99

    how to factor

    How do you factor these? The split middle term doesn't work.

    Q1:
    -6a^2 - 5a -1
    product = 6, sum = -5

    -6a^2 + a - 6a -1
    (-6a^2 + a) - (6a + 1)
    a(-6a + 1) - (6a + 1)
    (-6a + 1) (a - 1) -> this is not giving me the same answer if foil

    Q2:
    25a^2 -10a + 1
    product = 25, sum = -10
    ?? -> cannot find 2 numbers whose product is 25 and difference is -10

    Q3:
    12x^2 +17xy + 6y^2
    ?? -> Two terms with ^2, how do you do this?

    Q4:
    -30x^3 + 2x^2 + 12x
    ?? -> One term with ^3 and another with ^2, how do you do this?

    Please help.
    Thanks.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Eater of Worlds
    galactus's Avatar
    Joined
    Jul 2006
    From
    Chaneysville, PA
    Posts
    3,001
    Thanks
    1
    Quote Originally Posted by shenton View Post
    How do you factor these? The split middle term doesn't work.

    Q1:
    -6a^2 - 5a -1
    product = 6, sum = -5

    -6a^2 + a - 6a -1
    (-6a^2 + a) - (6a + 1)
    a(-6a + 1) - (6a + 1)
    (-6a + 1) (a - 1) -> this is not giving me the same answer if foil
    Ask yourself, what two numbers when added equal -5 and when multiplied equal 6(the leading coefficient of -6 must be accounted for, -6(-1)=6).

    Let's see...-3 and -2.....(-3)(-2)=6 and -3+(-2)=-5

    -6x^{2}-3x-2x-1

    (-6x^{2}-3x)-(2x+1)

    Factor:

    -3x(2x+1)-(2x+1)

    (-3x-1)(2x+1)

    Q4:
    -30x^3 + 2x^2 + 12x
    ?? -> One term with ^3 and another with ^2, how do you do this?
    First, factor out 2x:

    2x(-15x^{2}+x+6)

    Now, the quadratic in the parentheses factors:

    Same as before:

    What 2 numbers when multiplied equal -90,(-15*6), and when added equal 1.

    10 and -9?. Yep.

    -15x^{2}+10x-9x+6

    Factor:

    5x(-3x+2)+3(-3x+2)

    (5x+3)(-3x+2)

    2x(5x+3)(-3x+2)
    Last edited by galactus; November 21st 2006 at 03:09 AM.
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Super Member malaygoel's Avatar
    Joined
    May 2006
    From
    India
    Posts
    648
    Quote Originally Posted by shenton View Post
    How do you factor these? The split middle term doesn't work.

    Q1:
    -6a^2 - 5a -1
    product = 6, sum = -5

    -6a^2 + a - 6a -1
    (-6a^2 + a) - (6a + 1)
    a(-6a + 1) - (6a + 1)
    (-6a + 1) (a - 1) -> this is not giving me the same answer if foil
    the answer you got is right.
    the other form is (6a-1)(1-a)
    And what do you mean by "if foil"..............sorry for the mistake
    Q2:
    25a^2 -10a + 1
    product = 25, sum = -10
    ?? -> cannot find 2 numbers whose product is 25 and difference is -10
    difference is not -10 but the sum is -10. Now, i think you can easily find the numbers.
    Q3:
    12x^2 +17xy + 6y^2
    ?? -> Two terms with ^2, how do you do this?
    You apply the same method as in above problems.
    the general expression is
    ax^2 + bxy + cy^2
    you factorise it by finding the two numbers such h and k such that
    h+k=b
    hk=ac
    or by spliiting the terms(xy term is split)
    and the factors are of the form: (ex+fy)(gx+hy)
    the problems you were doing have y=1[/quote]
    Q4:
    -30x^3 + 2x^2 + 12x
    ?? -> One term with ^3 and another with ^2, how do you do this?
    you can take x common in every term to get
    x(-30x^2+2x+12)
    now you can simply factorise


    Keep Smiling
    Malay
    Last edited by malaygoel; November 21st 2006 at 03:08 AM. Reason: mistake apology
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Forum Admin topsquark's Avatar
    Joined
    Jan 2006
    From
    Wellsville, NY
    Posts
    9,664
    Thanks
    298
    Awards
    1
    Quote Originally Posted by shenton View Post
    Q1:
    -6a^2 - 5a -1
    product = 6, sum = -5

    -6a^2 + a - 6a -1
    (-6a^2 + a) - (6a + 1)
    a(-6a + 1) - (6a + 1)
    (-6a + 1) (a - 1) -> this is not giving me the same answer if foil
    Take a look at the line in red. You can't factor the two because they aren't the same. You effectively stated that -(6a + 1) = -6a + 1, which is not correct. galactus' solution is right.

    Quote Originally Posted by shenton View Post
    Q2:
    25a^2 -10a + 1
    product = 25, sum = -10
    ?? -> cannot find 2 numbers whose product is 25 and difference is -10
    (-5) \cdot (-5) = 25 and (-5) + (-5) = -10

    So
    25a^2 -10a + 1 = 25a^2 - 5a - 5a + 1

    = 5a(5a - 1) - (5a - 1) = (5a - 1)(5a - 1) = (5a - 1)^2

    -Dan
    Follow Math Help Forum on Facebook and Google+

  5. #5
    Member
    Joined
    Sep 2006
    Posts
    99
    Thanks guys for the guidance.

    Thanks galactus for showing Q1 and Q4. Question 1 is a big help because I kept using 1 and 6 instead of 2 and 3.

    Thanks malaygoel for your help.

    And what do you mean by "if foil"
    FOIL of (a + b)(a + b) means multiplying the factors out, ie.
    (a + b)(a + b) = a^2 +ab + ba + b^2. We should get back the original and this would enable us to verify that our factors are right.

    you can take x common in every term to get x(-30x^2+2x+12)
    galactus has a better way of doing this. He took 2x instead of x. This gives us (15x^2 + x + 6). I guess we need to take the the "biggest" or all the common terms such as 2x is more than x.

    Thanks topsquark as usual for the help.

    a(-6a + 1) - (6a + 1) Take a look at the line in red. You can't factor the two because they aren't the same.
    This comment is great help. I've always wondered and now I know that during the process of factoring, the two ( ) ( ) must be the same. If it is not the same, somewhere is wrong and they are not factors.

    Thanks for showing Q2.


    Q3:
    12x^2 +17xy + 6y^2
    ?? -> Two terms with ^2, how do you do this?
    Nobody worked on Q2. This question I belive is different from the rest.

    12x^2 +17xy + 6y^2

    We have a x^2 and y^2.

    It does not fall under ax^2 + bx + c style where I work by getting product and sum.

    How do you do this in the proper method (other than trial and error)?

    Thanks.
    Follow Math Help Forum on Facebook and Google+

  6. #6
    Forum Admin topsquark's Avatar
    Joined
    Jan 2006
    From
    Wellsville, NY
    Posts
    9,664
    Thanks
    298
    Awards
    1
    Quote Originally Posted by shenton View Post
    12x^2 +17xy + 6y^2

    We have a x^2 and y^2.

    It does not fall under ax^2 + bx + c style where I work by getting product and sum.

    How do you do this in the proper method (other than trial and error)?

    Thanks.
    Actually it IS quite similar (if you've done one before.)

    Note that the factorization has to take the form of:
    (ax + by)(cx + dy)
    else we aren't going to get the correct kind of terms. (We might get terms like 7x^2y for example.)

    So work your factoring like you did before:
    You are looking for two numbers that have the product: 12 \cdot 6 = 72 and sum to 17.

    This is a little hairier than the other examples, so I think the simplest thing to do would be to start listing the factors of 72 in pairs:
    1, 72 -> 1 + 72 = 73
    2, 36 -> 2 + 36 = 38
    etc.

    I find that the pair 8,9 has a product of 72 and sums to 17.

    So:
     12x^2 +17xy + 6y^2 = 12x^2 + 8xy + 9xy + 6y^2

    = (12x^2 + 8xy) + (9xy + 6y^2)

    = 4x(3x + 2y) + 3y(3x + 2y)

    = (4x + 3y)(3x + 2y)

    You can multiply this out to check that it gives the correct answer.

    -Dan
    Follow Math Help Forum on Facebook and Google+

  7. #7
    Member
    Joined
    Sep 2006
    Posts
    99
    Thanks, topsquark again for showing how to deal with this type of question.

    This is a little hairier than the other examples
    This type of question is certainly hairy.. it strecthes one's imagination to find the factors. At least for me. I spend much more time working on these questions than other topics (exponents, radicals). And now I have a bunch of such questions to work on. Thanks for the rescue.
    Follow Math Help Forum on Facebook and Google+

  8. #8
    Forum Admin topsquark's Avatar
    Joined
    Jan 2006
    From
    Wellsville, NY
    Posts
    9,664
    Thanks
    298
    Awards
    1
    Quote Originally Posted by shenton View Post
    Thanks, topsquark again for showing how to deal with this type of question.



    This type of question is certainly hairy.. it strecthes one's imagination to find the factors. At least for me. I spend much more time working on these questions than other topics (exponents, radicals). And now I have a bunch of such questions to work on. Thanks for the rescue.
    Some of this stuff is analytical and some of it falls under the category "you have to see it done once before you can tackle it." Just hang in there and keep asking questions and you'll do fine.

    -Dan
    Follow Math Help Forum on Facebook and Google+

  9. #9
    MHF Contributor Quick's Avatar
    Joined
    May 2006
    From
    New England
    Posts
    1,024
    Factoring Tip!

    I figured this out when I wasn't paying attention in math

    if you want to split z_1x^2+z_2x+z_3 into (ax+b)(cx+d)

    You can split it into z_1x^2+\left(\frac{z_2+\sqrt{z_2^2-4z_1z_3}}{2}\right)x+\left(\frac{z_2-\sqrt{z_2^2-4z_1z_3}}{2}\right)x+z_3

    note that either \frac{z_2+\sqrt{z_2^2-4z_1z_3}}{2}=ad or \frac{z_2+\sqrt{z_2^2-4z_1z_3}}{2}=bc

    let's say we have: -6a^2 - 5a -1

    So you can split it into this: z_1x^2+\left(\frac{z_2+\sqrt{z_2^2-4z_1z_3}}{2}\right)x+\left(\frac{z_2-\sqrt{z_2^2-4z_1z_3}}{2}\right)x+z_3

    substitute: -6x^2+\left(\frac{-5+\sqrt{(-5)^2-4(-6)(-1)}}{2}\right)x+ \left(\frac{-5-\sqrt{(-5)^2-4(-6)(-1)}}{2}\right)x-1

    thus: -6x^2+\left(\frac{-5+\sqrt{25-24}}{2}\right)x+\left(\frac{-5-\sqrt{25-24}}{2}\right)x-1

    therefore: -6x^2+\left(\frac{-5+\sqrt{1}}{2}\right)x+\left(\frac{-5-\sqrt{1}}{2}\right)x-1

    thus: -6x^2+\left(\frac{-5+1}{2}\right)x+\left(\frac{-5-1}{2}\right)x-1

    then: -6x^2+\left(\frac{-4}{2}\right)x+\left(\frac{-6}{2}\right)x-1

    then: -6x^2-2x-3x-1

    note that it is now in either the form: acx^2+adx+bcx+bd or acx^2+bcx+adx+bd
    Follow Math Help Forum on Facebook and Google+

  10. #10
    Forum Admin topsquark's Avatar
    Joined
    Jan 2006
    From
    Wellsville, NY
    Posts
    9,664
    Thanks
    298
    Awards
    1
    Quote Originally Posted by Quick View Post
    Factoring Tip!

    I figured this out when I wasn't paying attention in math

    if you want to split z_1x^2+z_2x+z_3 into (ax+b)(cx+d)

    You can split it into z_1x^2+\left(\frac{z_2+\sqrt{z_2^2-4z_1z_3}}{2}\right)x+\left(\frac{z_2-\sqrt{z_2^2-4z_1z_3}}{2}\right)x+z_3

    note that either \frac{z_2+\sqrt{z_2^2-4z_1z_3}}{2}=ad or \frac{z_2+\sqrt{z_2^2-4z_1z_3}}{2}=bc

    let's say we have: -6a^2 - 5a -1

    So you can split it into this: z_1x^2+\left(\frac{z_2+\sqrt{z_2^2-4z_1z_3}}{2}\right)x+\left(\frac{z_2-\sqrt{z_2^2-4z_1z_3}}{2}\right)x+z_3

    substitute: -6x^2+\left(\frac{-5+\sqrt{(-5)^2-4(-6)(-1)}}{2}\right)x+ \left(\frac{-5-\sqrt{(-5)^2-4(-6)(-1)}}{2}\right)x-1

    thus: -6x^2+\left(\frac{-5+\sqrt{25-24}}{2}\right)x+\left(\frac{-5-\sqrt{25-24}}{2}\right)x-1

    therefore: -6x^2+\left(\frac{-5+\sqrt{1}}{2}\right)x+\left(\frac{-5-\sqrt{1}}{2}\right)x-1

    thus: -6x^2+\left(\frac{-5+1}{2}\right)x+\left(\frac{-5-1}{2}\right)x-1

    then: -6x^2+\left(\frac{-4}{2}\right)x+\left(\frac{-6}{2}\right)x-1

    then: -6x^2-2x-3x-1

    note that it is now in either the form: acx^2+adx+bcx+bd or acx^2+bcx+adx+bd
    You realize, of course, that this works because if you have (x - r_1)(x - r_2) = x^2 - (r_1 + r_2)x + r_1r_2

    The negative sum of the zeros will be the middle coefficient.

    However, if you insist on doing it this way I must point out it is far simpler just to solve for the zeros using the quadratic formula.

    -Dan
    Follow Math Help Forum on Facebook and Google+

  11. #11
    MHF Contributor Quick's Avatar
    Joined
    May 2006
    From
    New England
    Posts
    1,024
    Quote Originally Posted by topsquark View Post
    You realize, of course, that this works because if you have (x - r_1)(x - r_2) = x^2 - (r_1 + r_2)x + r_1r_2

    The negative sum of the zeros will be the middle coefficient.

    However, if you insist on doing it this way I must point out it is far simpler just to solve for the zeros using the quadratic formula.

    -Dan
    my way works for (ax+b)(cx+d) and (ax-b)(cx-d) and (ax+b)(cx-d)

    not just (ax-b)(cx-d)

    but I admit it's slow it's meant to help you if your stuck.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Replies: 0
    Last Post: July 19th 2011, 11:45 AM
  2. factor analysis , extract second factor loading
    Posted in the Advanced Statistics Forum
    Replies: 0
    Last Post: June 1st 2011, 05:17 AM
  3. factor analysis , extract second factor loading
    Posted in the Differential Geometry Forum
    Replies: 0
    Last Post: May 30th 2011, 05:29 AM
  4. Factor 3x^2 +2x -6
    Posted in the Algebra Forum
    Replies: 8
    Last Post: October 11th 2009, 10:12 AM
  5. How do i factor this?
    Posted in the Algebra Forum
    Replies: 4
    Last Post: September 18th 2008, 02:45 PM

Search Tags


/mathhelpforum @mathhelpforum