1. ## Rational Expressions

$\frac {y^2}{y^2-9} + \frac {9-6y}{y^2-9}$

$\frac {3x}{x^2-4} + \frac {5x}{x^2+x-2} - \frac {3}{x^2-4x+4}$

Complex Fraction: $\frac {x+2}{x-2}- \frac {x-2}{x+2} over \frac {x-2}{x+2} + \frac {x+2}{x-2}$

Complex Fraction (-1)(-2) are negative powers: $\frac {3a^-1}{4a^-2} \frac {+3b^-1}{-9b^-2}$

Complex Fraction: $\frac {2}{a^2} - \frac {1}{ab}- \frac {1}{b^2}over\frac {1}{a^2} - \frac {3}{ab} + \frac {2}{a^2b^2}$

Sorry, I didn't know how to make a complex fraction

2. Originally Posted by HSS8
$\frac {y^2}{y^2-9} + \frac {9-6y}{y^2-9}$

$\frac {3x}{x^2-4} + \frac {5x}{x^2+x-2} - \frac {3}{x^2-4x+4}$

Complex Fraction: $\frac{\frac {x+2}{x-2}- \frac {x-2}{x+2}}{\frac {x-2}{x+2} + \frac {x+2}{x-2}}$

Complex Fraction (-1)(-2) are negative powers: $\frac {3a^-1}{4a^-2} \frac {+3b^-1}{-9b^-2}$

Complex Fraction: $\frac{\frac {2}{a^2} - \frac {1}{ab}- \frac {1}{b^2}}{\frac {1}{a^2} - \frac {3}{ab} + \frac {2}{a^2b^2}}$

Sorry, I didn't know how to make a complex fraction
What's the actual question

3. $\frac {y^2}{y^2-9} + \frac {9-6y}{y^2-9}$ Answer: $\frac {x^2+3x+5}{(x-3)(x+1)(x-2)}$

$\frac {3x}{x^2-4} + \frac {5x}{x^2+x-2} - \frac {3}{x^2-4x+4}$ Answer: $\frac {8x^3-32x^2-23x+6}{(x-2)(x-2)(x+2)(x-1)}$

Complex Fraction: $\frac {x+2}{x-2}- \frac {x-2}{x+2} over \frac {x-2}{x+2} + \frac {x+2}{x-2}$ Answer: $\frac {4x}{x^2+4}$

Complex Fraction (-1)(-2) are negative powers: $\frac {3a^-1}{4a^-2} \frac {+3b^-1}{-9b^-2}$ Answer: $\frac {3ab(a+b)}{(2b+a)(2b-a)}$

Complex Fraction: $\frac {2}{a^2} - \frac {1}{ab}- \frac {1}{b^2}over\frac {1}{a^2} - \frac {3}{ab} + \frac {2}{a^2b^2}$ Answer: $\frac {2b+a}{b-2a}$

My answer for the first two problems, didn't come out right, and I'm having trouble simplifying the complex fractions. First, what are the LCDs, and how do the problems simplify.