Assuming that det (AB)= det(A)det(B) for 3 x 3 matrices, prove that

| 3 a+b+c a^3+b^3+c^3 |

| a+b+c a^2+b^2+c^2 a^4+b^4+c^4 |

| a^2+b^2+c^2 a^3+b^3+c^3 a^5+b^5+c^5 |

is equal to (a+b+c) (a-b)^2 (a-c)^2 (b-c)^2

I do this and get 0 which doesnt help me at all