Results 1 to 2 of 2

Math Help - matrix

  1. #1
    Member
    Joined
    Nov 2006
    From
    chicago
    Posts
    156

    matrix

    Solve the matrix X:

    matrix-matriza.jpg
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Forum Admin topsquark's Avatar
    Joined
    Jan 2006
    From
    Wellsville, NY
    Posts
    10,079
    Thanks
    375
    Awards
    1
    Quote Originally Posted by Mr_Green View Post
    Solve the matrix X:

    Click image for larger version. 

Name:	matrizA.JPG 
Views:	18 
Size:	5.1 KB 
ID:	1222
    X \cdot \left ( \begin{array}{cc} 3 & -1 \\ 2 & 4 \end{array} \right ) - \left ( \begin{array}{cc} -5 & 2 \\ 6 & 3 \end{array} \right ) = \left ( \begin{array}{cc} -2 & -9 \\ -5 & -22 \end{array} \right )

    X \cdot \left ( \begin{array}{cc} 3 & -1 \\ 2 & 4 \end{array} \right ) - \left ( \begin{array}{cc} -5 & 2 \\ 6 & 3 \end{array} \right ) + \left ( \begin{array}{cc} -5 & 2 \\ 6 & 3 \end{array} \right )= \left ( \begin{array}{cc} -2 & -9 \\ -5 & -22 \end{array} \right ) + \left ( \begin{array}{cc} -5 & 2 \\ 6 & 3 \end{array} \right )

    X \cdot \left ( \begin{array}{cc} 3 & -1 \\ 2 & 4 \end{array} \right ) = \left ( \begin{array}{cc} -7 & -7 \\ 1 & -19 \end{array} \right )

    X \cdot \left ( \begin{array}{cc} 3 & -1 \\ 2 & 4 \end{array} \right ) \cdot \left ( \begin{array}{cc} 3 & -1 \\ 2 & 4 \end{array} \right )^{-1} = \left ( \begin{array}{cc} -7 & -7 \\ 1 & -19 \end{array} \right ) \cdot \left ( \begin{array}{cc} 3 & -1 \\ 2 & 4 \end{array} \right )^{-1}

    Now,
    \left ( \begin{array}{cc} a & b \\ c & d \end{array} \right )^{-1} = \frac{1}{ad-bc} \left ( \begin{array}{cc} d & -b \\ -c & a \end{array} \right )
    so:

    \left ( \begin{array}{cc} 3 & -1 \\ 2 & 4 \end{array} \right )^{-1} = \frac{1}{3 \cdot 4 - -1 \cdot 2} \left ( \begin{array}{cc} 4 & 1 \\ -2 & 3 \end{array} \right )  = \frac{1}{14} \left ( \begin{array}{cc} 4 & 1 \\ -2 & 3 \end{array} \right )

    Thus
    X \cdot \left ( \begin{array}{cc} 3 & -1 \\ 2 & 4 \end{array} \right ) \cdot \left ( \begin{array}{cc} 3 & -1 \\ 2 & 4 \end{array} \right )^{-1} = \left ( \begin{array}{cc} -7 & -7 \\ 1 & -19 \end{array} \right ) \cdot \frac{1}{14} \left ( \begin{array}{cc} 4 & 1 \\ -2 & 3 \end{array} \right )

    X = \left ( \begin{array}{cc} -1 & -2 \\ 3 & -4 \end{array} \right )

    -Dan
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Replies: 2
    Last Post: November 27th 2010, 03:07 PM
  2. [SOLVED] Elementary matrix, restore to identity matrix
    Posted in the Advanced Algebra Forum
    Replies: 3
    Last Post: February 13th 2010, 09:04 AM
  3. unitary and upper triangular matrix => diagonal matrix
    Posted in the Advanced Algebra Forum
    Replies: 1
    Last Post: December 10th 2009, 06:52 PM
  4. Replies: 3
    Last Post: March 17th 2009, 10:10 AM
  5. Replies: 4
    Last Post: September 24th 2007, 04:12 AM

Search Tags


/mathhelpforum @mathhelpforum