# Thread: Inverse of function

1. ## Inverse of function

y=3x-1/2x

My attempt:

$y=(6x^2-1)/(2x)$

x= $(6y^2-1)/(2y)$

$2yx=6y^2-1$

$2yx-6y^2=-1$

$
2y(x-3y)=-1$

$2y=-1/(x-3y)$

( I get stuck her what do l do with the y in the denominator ? )

2. Once you have that 2yx= 6y^2- 1, rewrite it as 6y^2- 2xy- 1 and use the quadratic formula to solve for y.

Solve that quadratic equation for x you will get a " $\pm$". This function does not have a true inverse.

3. Originally Posted by HallsofIvy
Once you have that 2yx= 6y^2- 1, rewrite it as 6y^2- 2xy- 1 and use the quadratic formula to solve for y.

Solve that quadratic equation for x you will get a " $\pm$". This function does not have a true inverse.

I solved it thank you very much for your help

4. Originally Posted by HallsofIvy
Once you have that 2yx= 6y^2- 1, rewrite it as 6y^2- 2xy- 1 and use the quadratic formula to solve for y.

Solve that quadratic equation for x you will get a " $\pm$". This function does not have a true inverse.

If my restricted domain is D={x|x<0} does that mean for my inverse function is going to be the one with a minus sign on the quadratic equation.