1. ## solve fractions

2x+3/5=9

-30=2x^-1

32=4/6x-34

4x-5x=3-5+6x

2. Originally Posted by jerryramos
-30=2x^-1
$\displaystyle -30 = \frac{2}{x}$

$\displaystyle -30 \cdot x = \frac{2}{x} \cdot x$

$\displaystyle -30x = 2$

$\displaystyle \frac{-30x}{-30} = \frac{2}{-30}$

$\displaystyle x = -\frac{1}{15}$

-Dan

3. Originally Posted by jerryramos
32=4/6x-34
Is this
$\displaystyle 32 = \frac{4}{6x} - 34$
or
$\displaystyle 32 = \frac{4}{6x-34}$

I'm going to guess it is the second one.
$\displaystyle 32 = \frac{4}{6x-34}$

$\displaystyle 30 \cdot (6x-34) = \frac{4}{6x-34} \cdot (6x-34)$

$\displaystyle 30(6x-34) = 4$

$\displaystyle 180x - 1020 = 4$

$\displaystyle 180x - 1020 + 1020 = 4 + 1020$

$\displaystyle 180x = 1024$

$\displaystyle \frac{180x}{180} = \frac{1024}{180}$

$\displaystyle x = \frac{256}{45}$

-Dan

4. Originally Posted by jerryramos
4x-5x=3-5+6x
$\displaystyle 4x - 5x = 3 - 5 + 6x$

$\displaystyle -x = -2 + 6x$

$\displaystyle -x - 6x = -2 + 6x - 6x$

$\displaystyle -7x = -2$

$\displaystyle \frac{-7x}{-7} = \frac{-2}{-7}$

$\displaystyle x = \frac{2}{7}$

-Dan

5. Originally Posted by jerryramos
2x+3/5=9
What is this? Is it
$\displaystyle \frac{2x+3}{5} = 9$?

If so:
$\displaystyle \frac{2x+3}{5} \cdot 5 = 9 \cdot 5$

$\displaystyle 2x + 3 = 45$

$\displaystyle 2x + 3 - 3 = 45 - 3$

$\displaystyle 2x = 42$

$\displaystyle \frac{2x}{2} = \frac{42}{2}$

$\displaystyle x = 21$

-Dan

6. ## I need help with this one

32=4/6 (x)-34

7. Originally Posted by jerryramos
32=4/6 (x)-34
Hello,

I assume that you mean:

$\displaystyle 32=\frac{4}{6} x-34$. Add 34:

$\displaystyle 66=\frac{4}{6} x$. Divide by $\displaystyle \frac{4}{6}$

x = 99

EB