1. ## completing the square

Hello everyone,

Could someone please tell me if this is the correct way to complete the square? If not, could you please show me where I went wrong?

11a^2+7a=6
11a^2+7a-6=0
11(a^2+7/11a-6/11)=0
11(a+7/11/2)^2-7/11-6/11=0
11(a+7/11/2)^2=13/11
(a+49/121)^2=13/121
a+49/121=square root(13/121)
a=-.077

Thank you very much

2. $\displaystyle 11a^2+7a=6$
$\displaystyle a^2+[7/11]a+[49/484]=[313/484]$
$\displaystyle (a+[7/22])^2=[313/484]$
$\displaystyle a+[7/22]=squrt[313/484]$
$\displaystyle a=-[7/22]+/-squrt[313/484]$

dont know if thats any good to you, I'm waiting for a reply for something else so thought I'd give this ago

3. $\displaystyle 11a^2 + 7a = 6$
$\displaystyle a^2 + (7/11)a = (6/11)$
$\displaystyle a^2 + (7/11)a + (7/22)^2 = (6/11) + (7/22)^2$
$\displaystyle (a + (7/22))^2 = (264/484) + (49/484)$
$\displaystyle (a + (7/22))^2 = 313/484$
$\displaystyle a + (7/22) = (+/-) \sqrt{313}/\sqrt{484}$
$\displaystyle a + (7/22) = (+/-) \sqrt{313}/22$
$\displaystyle a = -7/22 (+/-) \sqrt{313}/22$