$\displaystyle f(x)=x^4-7x^3+9x^2+7x-10$

$\displaystyle f(1)=1^4-7*1^3+9*1^2+7*1-10=0$

$\displaystyle x-1$ is a factor, using long devision I have;

$\displaystyle f(x)=x^4-7x^3+9x^2+7x-10=(x-1)(x^3-6x^2+3x+10)=(x-1)g(x)$

$\displaystyle g(2)=2^3-^*2^2+3*2+10=0$

so $\displaystyle x-2$ is a factor, using long devision again I get;

$\displaystyle f(x)=x^4-7x^3+9x^2+7x-10=(x-1)(x-2)(x^2+4x+11+(32/x-2))$

and now I'm stuck, please help