Solve for m and n:
2m-n=3
mē - mn+nē =3
Here is one way, by substitution.
2m -n = 3 ------(1)
mē -mn +nē = 3 ---------(2)
From (1),
2m -3 = n, or, n = 2m -3
Substitute that into (2)
m^2 -m(2m -3) +(2m -3)^2 = 3
m^2 -(2m^2 -3m) +(4m^2 -12m +9) = 3
m^2 -2m^2 +3m +4m^2 -12m +9 -3 = 0
Collect like terms,
(m^2 -2m^2 +4m^2) +(3m -12m) +(9 -3) = 0
3m^2 -9m +6 = 0
Get its simplest form, divide both sides by 3,
m^2 -3m +2 = 0
Factor that,
(m -2)(m-1) = 0
m-2 = 0
So, m= 2
m -1 = 0
So, m = 1
When m=2,
n = 2m -3 = 2*2 -3 = 1
When m=1,
n = 2m -3 = 2*1 -3 = -1
Therefore, there are two sets of answer:
m=2, n=1 ----------answer.
m = 1, n = -1 ----------answer.