Results 1 to 11 of 11

Math Help - discriminant?!!!

  1. #1
    Newbie
    Joined
    Oct 2006
    Posts
    3

    Exclamation discriminant?!!!

    use the discriminant to find the range of values that K can take if the equation K x^2-4x+5-K=0 has no real roots

    someone please help!!! thank you xx
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor

    Joined
    Aug 2006
    Posts
    18,966
    Thanks
    1785
    Awards
    1
    You must solve the following for K.
    b^2  - 4ac < 0 \Rightarrow 16 - 4(k)(5 - k) < 0
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Newbie
    Joined
    Oct 2006
    Posts
    3
    soo... are you not gonna help me work it out then? or did u jus do so? lol
    Follow Math Help Forum on Facebook and Google+

  4. #4
    MHF Contributor

    Joined
    Aug 2006
    Posts
    18,966
    Thanks
    1785
    Awards
    1
    Quote Originally Posted by concentrate... View Post
    soo... are you not gonna help me work it out then? or did u jus do so? lol
    Personally, I make it a policy not to do anyone’s homework completely.
    I think that it is fair to help.
    I think it is wrong to work it out completely.
    Mathematics is not a spectator activity!
    To learn mathematics, one must do mathematics.
    Follow Math Help Forum on Facebook and Google+

  5. #5
    Member Ranger SVO's Avatar
    Joined
    Apr 2006
    From
    Abilene Tx
    Posts
    90

    Thumbs up

    Quote Originally Posted by Plato View Post
    Personally, I make it a policy not to do anyone’s homework completely.
    I think that it is fair to help.
    I think it is wrong to work it out completely.
    Mathematics is not a spectator activity!
    To learn mathematics, one must do mathematics.
    Very Eloquently Stated and I could not agree more.
    Follow Math Help Forum on Facebook and Google+

  6. #6
    Senior Member
    Joined
    Apr 2006
    Posts
    401
    If someone has made a genuine attempt at a problem, I don't see how helping them obtain an answer is detrimental. That way they are able to complete the other homework problems, which are more than likely similar to the one asked. If they have multiple questions, show how to complete one and let them solve the others. Then, they can show what they learned and can post their solutions to see if they are correct. Or, at the least, providing an obvious hint that that leads to the solution.
    Follow Math Help Forum on Facebook and Google+

  7. #7
    MHF Contributor
    Joined
    Oct 2005
    From
    Earth
    Posts
    1,599
    I once tried to debate this point on this site and got threatened Some people like to learn through getting hints, some like to have the whole solution and work through it. I think the first is more beneficial.
    Follow Math Help Forum on Facebook and Google+

  8. #8
    Global Moderator

    Joined
    Nov 2005
    From
    New York City
    Posts
    10,616
    Thanks
    10
    Quote Originally Posted by Jameson View Post
    I once tried to debate this point on this site and got threatened Some people like to learn through getting hints, some like to have the whole solution and work through it. I think the first is more beneficial.
    I almost post to the end (the real answer is because I am lazy).

    When a person asks a question say on ODE's and I answer it, I do not do it fully because since I know the user needs to be already familar with some concepts and I skip steps and sometimes show the final equation but do not complete it (again because I am lazy).

    But I do not think it is helpful when somebody asks how to do a certain differenciation and somebody posts, ..."Use the chain rule". Such a post is a totally useless posts that does not help the reader at all.
    Follow Math Help Forum on Facebook and Google+

  9. #9
    Member Glaysher's Avatar
    Joined
    Aug 2006
    From
    Newton-le-Willows
    Posts
    224
    Quote Originally Posted by ThePerfectHacker View Post
    I almost post to the end (the real answer is because I am lazy).

    When a person asks a question say on ODE's and I answer it, I do not do it fully because since I know the user needs to be already familar with some concepts and I skip steps and sometimes show the final equation but do not complete it (again because I am lazy).

    But I do not think it is helpful when somebody asks how to do a certain differenciation and somebody posts, ..."Use the chain rule". Such a post is a totally useless posts that does not help the reader at all.
    And in this case I believe this is a test question that the student failed to get right in their recent test (and may have to repeat the same test again)

    Just using my psychic powers.

    In any case I suspect further explanation is needed

    The discriminant is b^2 - 4ac
    When a quadratic has no real roots then b^2-4ac<0

    b = -4

    a = k

    c = 5 - k

    Substitute these values into the inequality to get the quadratic inequality
    that Plato got. You must solve this (by sketching the graph of 16 - 4k(5 - k) to help)
    Follow Math Help Forum on Facebook and Google+

  10. #10
    Super Member
    earboth's Avatar
    Joined
    Jan 2006
    From
    Germany
    Posts
    5,830
    Thanks
    123
    Quote Originally Posted by concentrate... View Post
    use the discriminant to find the range of values that K can take if the equation K x^2-4x+5-K=0 has no real roots

    someone please help!!! thank you xx
    Hi,

    I've got the impression that you and your problem are little bit out of sight.
    So let's start again.

    1. You've got a quadratic equation in x. I presume that you know that you have to use a special formula to solve this equation:
    If the equation is: ax^2+bx+c=0, then the solutions are:
    x=\frac{-b\pm\sqrt{b^2-4ac}}{4a}

    2. Compare the given equation with the standard equation. You'll find out:
    a = K
    b = -4
    C = 5-K
    Now plug in these terms into the formula and you'll get:

    x=\frac{4\pm\sqrt{16-4*K*(5-K)}}{4K}

    The radicand must be zero or positive (That means greater than zero) to get real values for x. (The radicand is called the dicriminant because it separates the solution into real or complex values)

    3. So you have to calculate the values of K so that the dicriminant is zero or positive.

    16-4*K*(5-K)\geq0. Expand the LHS of the inequality:
    4K^2-20K+16\geq0. Divide by 4
    K^2-5K+4\geq0. Factorize
    (K-1)(K-4)\geq0

    4. Now you have a product which is gerater or equal zero. A prduct of two factors is positive if both factors have the same sign (More colloquial: +*+ = + or -*-= +). "+" means greater as zero, "-" menas smaller than zero.

    So you get:

    K-1\geq 0\ \wedge K-4 \geq 0   \vee  K-1\le 0\ \wedge \ K-4\le 0

    I'll leave these inequalities for you.

    EB
    Follow Math Help Forum on Facebook and Google+

  11. #11
    Newbie
    Joined
    Oct 2006
    Posts
    3

    Talking

    Quote Originally Posted by Glaysher View Post
    And in this case I believe this is a test question that the student failed to get right in their recent test (and may have to repeat the same test again)

    Just using my psychic powers.

    In any case I suspect further explanation is needed

    The discriminant is b^2 - 4ac
    When a quadratic has no real roots then b^2-4ac<0

    b = -4

    a = k

    c = 5 - k

    Substitute these values into the inequality to get the quadratic inequality
    that Plato got. You must solve this (by sketching the graph of 16 - 4k(5 - k) to help)
    Glaysher... NO i am not a student who failed my test and has to redo it or something. just a guy in college asked me this question because he found it REALLY hard and offered me £10 to work it out
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Discriminant
    Posted in the Advanced Algebra Forum
    Replies: 4
    Last Post: March 31st 2010, 01:31 PM
  2. discriminant
    Posted in the Algebra Forum
    Replies: 4
    Last Post: September 22nd 2009, 07:46 AM
  3. Discriminant
    Posted in the Algebra Forum
    Replies: 9
    Last Post: August 16th 2009, 02:28 PM
  4. Discriminant
    Posted in the Algebra Forum
    Replies: 1
    Last Post: March 22nd 2009, 10:59 PM
  5. Discriminant
    Posted in the Algebra Forum
    Replies: 4
    Last Post: August 23rd 2008, 08:07 AM

Search Tags


/mathhelpforum @mathhelpforum