divide and express the following equation in standard form, can someone explain to me how to do this.
thanks in advance
You must multiply by the conjugate.
$\displaystyle \frac{1}{a+bi}= \frac{1}{a+bi}\cdot \frac{a-bi}{a-bi} = \frac{a-bi}{a^2-b^2} $
$\displaystyle \frac{a}{a^2-b^2}-\frac{bi}{a^2-b^2} $
You can also use the polar form (Euler notation)
$\displaystyle *re^{i\theta} $
In your case the top part is $\displaystyle 2e^{0}=2 $ and the bottom part $\displaystyle \sqrt{3^2+1}e^{i arctan\frac{-1}{3}} \simeq \sqrt{10}e^{-0.3218i}$ You are thus going to end with $\displaystyle \frac{2}{ \sqrt{10}e^{-0.3218i}}=\frac{2e^{0.3218i}}{ \sqrt{10}}$ $\displaystyle \frac{2}{ \sqrt{10}}(cos(0.3218)+isin(0.3218))$