I am really stuck with this problem, any help would be greatly appreciated
d^5/f^2=h^0.25(c/e-g)^3
Thanks,
JP
Hello, JP!
The instructions are rather vague.
I assume we are to take logs ... then "expand" the expression.
$\displaystyle \frac{d^5}{f^2} \:=\:h^{\frac{1}{4}}\left(\frac{c}{e-g}\right)^3$
We have: .$\displaystyle \log\left(\frac{d^5}{f^2}\right) \;=\;\log\left[h^{\frac{1}{4}}\left(\frac{c}{e-g}\right)^3\right] $
. . . $\displaystyle \log(d^5) - \log(f^2) \;=\;\log\left(h^{\frac{1}{4}}\right) + \log\left(\frac{c}{e-g}\right)^3 $
. . .$\displaystyle 5\log(d) - 2\log(f) \;=\;\frac{1}{4}\log(h) + 3\log\left(\frac{c}{e-g}\right) $
. . .$\displaystyle 5\log(d) - 2\log(f) \;=\;\tfrac{1}{4}\log(h) + 3\bigg[\log(c) - \log(e-g)\bigg] $
. . .$\displaystyle 5\log(d) - 2\log(f) \;=\;\tfrac{1}{4}\log(h) + 3\log(c) - 3\log(e-g) $