Find the complex number z such that:- $\displaystyle (1+3i)+((4-5i)/(z))=(-2-3i)$ thanks for any help..
Follow Math Help Forum on Facebook and Google+
Originally Posted by omibayne Find the complex number z such that $\displaystyle (1+3i)+((4-5i)/(z))=(-2-3i)$ If you solve for z: $\displaystyle z=\frac {4-5i}{(-2-3i)-(1+3i)}$
Originally Posted by Plato If you solve for z: $\displaystyle z=\frac {4-5i}{(-2-3i)-(1+3i)}$ i got $\displaystyle z=\frac{18+39i}{45}$....is it right?
Originally Posted by omibayne i got $\displaystyle z=\frac{18+39i}{45}$....is it right? That's what I get when I work it out
View Tag Cloud