Find the equation of the quadratic given it's real roots $\displaystyle 2-\sqrt 3 $ and $\displaystyle 2 + \sqrt3$ which passes through the point (1,-2)
if $\displaystyle r_1$ and $\displaystyle r_2$ are two roots of a quadratic ...
$\displaystyle f(x) = k(x - r_1)(x - r_2)$
$\displaystyle f(x) = k[x^2 -(r_1 + r_2)x + r_1 \cdot r_2]$
now, substitute $\displaystyle r_1 = 2-\sqrt{3}$ and $\displaystyle r_2 = 2 + \sqrt{3}$ to determine the basic quadratic in [...], then use the fact that $\displaystyle f(1) = -2$ to find $\displaystyle k$
Hello, euclid2!
There are several approaches to this problem.
. . Here's one of them . . .
Find the equation of the quadratic given its real roots $\displaystyle 2-\sqrt 3 $ and $\displaystyle 2 + \sqrt3$
which passes through the point (1,-2)
If the quadratic, $\displaystyle ax^2 + bx + c$, has roots $\displaystyle p\text{ and }q$, then: .$\displaystyle p+q \:=\:-\frac{b}{a},\;\;pq \:=\:\frac{c}{a}$
So we have: .$\displaystyle \begin{array}{ccc}p+q &=&4 \\ pq &=& 1\end{array}\quad\Rightarrow\quad\begin{array}{ccc }\frac{b}{a} &=& \text{-}4 \\ \frac{c}{a} &=& 1 \end{array}$ . $\displaystyle \Rightarrow\quad\begin{array}{ccc}b &=&\text{-}4a \\ c &=&a \end{array}$
. . The function (so far) is: .$\displaystyle f(x) \:=\:ax^2 -4ax + a$
Since (1,-2) is on the graph: .$\displaystyle a\!\cdot\!1^2 - 4a\!\cdot\!1 + a \:=\:-2 \quad\Rightarrow\quad -2a \:=\:-2$
. . Hence: .$\displaystyle a\:=\:1,\;\;b\:=\:-4,\;\;c\:=\:1$
Therefore: .$\displaystyle f(x)\;=\;x^2 - 4x + 1$
$\displaystyle f(x) = k(x - r_1)(x - r_2)$
$\displaystyle f(x) = k[x^2 -(r_1 + r_2)x + r_1 \cdot r_2]$
$\displaystyle r_1 + r_2 = (2 - \sqrt{3}) + (2 + \sqrt{3}) = 4$
$\displaystyle r_1 \cdot r_2 = (2 - \sqrt{3})(2 + \sqrt{3}) = 4 - 3 = 1$
$\displaystyle f(x) = k(x^2 - 4x + 1)$
since $\displaystyle f(1) = -2$
$\displaystyle -2 = k[(1)^2 - 4(1) + 1]$
$\displaystyle -2 = k(-2)$
$\displaystyle k = 1$
so ...
$\displaystyle f(x) = x^2 - 4x + 1$