Hello, sukisaturn!
You've never done one of these before?
Then I'll give you a minilesson.
$\displaystyle \begin{array}{ccc}y &<& 4x+3 \\ y &>& \text{}3x3 \end{array}$
A onevariable inequality can be graphed on a number line.
For example: .$\displaystyle 2x + 1 \:> \:5 \quad\Rightarrow\quad x \:>\:2$ Code:
  *    o = = = = =
0 2
A twovariable inequality is graph on a plane.
To graph: $\displaystyle y \:<\:4x + 3$
. . we graph the line: $\displaystyle y \:=\:4x + 3$
Because it says "$\displaystyle <$", we shade the region below the line. Code:
 /::::
 /::::
 /::::
/:::::
*:::::
/::::
  *:+::  
/:::::
/:::::
/::::::

To graph $\displaystyle y \:> \:\text{}3x+3$
. . we graph the line: $\displaystyle y \:=\:\text{}3x+3$
Because it says "$\displaystyle >$", we shade the region above the line. Code:

\:::::::
\:::::::
\::::::
  *:+::  
\:::::
*:::::
\:::::
 \::::
 \
The final answer is the region that has been shaded twice.
Code:

 /::
 /:::
\ /::::
\ *:::::
\ /:::::
  *:+::: 
/ \:::::
/ *:::::
/ \::::
 \:::
 \::

This shaded region represents billions of points with coordinates $\displaystyle (x,y)$
. . which satisfy both given inequalities.