a) LogP = 2 + logx
b) LogM = 1.477 - x
Help!
I assume that the base of the logarithms is 10. If so:
$\displaystyle \log(P)=2+\log(x)~\implies~10^{\log(P)}=10^{2+\log (x)}~\implies~P=100\cdot x$
I assume that $\displaystyle 1.477 = \log(30)$ . If so:
$\displaystyle \log(M)=1.477-x~\implies~10^{\log(M)}=10^{1.477-x}~\implies~ M=\dfrac{10^{1.477}}{10^x}\implies~ M=\dfrac{30}{10^x}$